Hierarchically built-up multicompartment nanoaggregate systems are of interest for, , novel materials and medicine. Here we present a versatile strategy to generate and unambiguously characterize complex coacervate-core micelles by exploiting four different dendrimeric subcomponents as core-units. The resulting mesoscale structures have a hydrodynamic diameter of 50 nm and a core size of 33 nm, and host about thirty 6th generation polyamidoamine (PAMAM) dendrimers.
View Article and Find Full Text PDFA versatile method is presented to form dendrimer superstructures by exploiting coacervate-core micelles as a template to confine and organize the hyperbranched macromolecules. First, complex coacervate-core micelles are formed from negative-neutral block copolymers and positively charged polyamidoamine dendrimers. The dendrimers inside the micellar core are then covalently cross-linked with each other upon addition of glutaraldehyde.
View Article and Find Full Text PDFImproving building energy performance requires the development of new highly insulative materials. An affordable retrofitting solution comprising a thin film could improve the resistance to heat flow in both residential and commercial buildings and reduce overall energy consumption. Here, we propose cellulose aerogel films formed from pellicles produced by the bacteria as insulation materials.
View Article and Find Full Text PDFUnderstanding the dynamics of discrete self-assembled structures under influence of external triggers is of interest to harvest the potential of nano- and mesoscale materials. In particular, controlling the hierarchical organization of (macro)molecular and nanoparticle building blocks in monolayer superstructures is of paramount importance for tuning properties and characteristics. Here we show how the electron beam in cryo-transmission electron microscopy can be exploited to induce and follow local migration of building blocks and global migration of micellar aggregates inside micrometer-sized superstructures.
View Article and Find Full Text PDFOleylamine-capped gold nanoparticles (AuNPs) with sizes ranging from 5 to 13 nm and narrow size distributions (<10%) are synthesized by using a seeded growth approach. Water-solubility is achieved by using a UV-induced ligand exchange approach, resulting in transfer from the organic to an aqueous phase.
View Article and Find Full Text PDFMicelles have been recognized as versatile platforms for different biomedical applications, from bioimaging to drug delivery. Complex coacervate core micelles present great advantages compared to traditional micelles, however controlling the number of charges per core-unit and the stability is still a challenge. We here present cyclodextrin-based complex coacervate core micelles where the charge per core-unit can be straightforwardly tuned by cyclodextrin host-guest interactions.
View Article and Find Full Text PDFWe here provide detailed insight in self-assembled complex coacervate systems exploiting gold nanoparticles for cryoTEM contrast. Nanoparticle-containing dendrimicelles are formed from fifth-generation dendrimer-encapsulated nanoparticles (DENs) and dendrimer-stabilized nanoparticles (DSNs). The complex coacervate structures self-organize in biconcave thin water layers into size-sorted monolayer superstructures.
View Article and Find Full Text PDFBiconcave thin water layers represent a template to induce organization of supramolecular structures into ordered monolayers. Here we show how micelles form extensive micrometer-sized pseudo-2D superstructures that reveal size-sorting and geometric pattern formation, as shown by cryo-transmission electron microscopy (cryoTEM). Electron-rich gold particles inside the micelles facilitate direct visualization and determination of size, composition, and ordering of the micellar assemblies over multiple length scales.
View Article and Find Full Text PDFThe use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad).
View Article and Find Full Text PDFOptical (molecular) imaging can benefit from a combination of the high signal-to-background ratio of activatable fluorescence imaging with the high specificity of luminescence lifetime imaging. To allow for this combination, both imaging techniques were integrated in a single imaging agent, a so-called activatable lifetime imaging agent. Important in the design of this imaging agent is the use of two luminophores that are tethered by a specific peptide with a hairpin-motive that ensured close proximity of the two while also having a specific amino acid sequence available for enzymatic cleavage by tumor-related MMP-2/9.
View Article and Find Full Text PDFThe self-assembly of colloidal conjugated polymers presents a versatile and powerful oute towards new functional optoelectronic materials and devices. However, this strategy relies on the existence of chemical protocols to prepare highly monodisperse colloids of conjugated polymers in high yields. Here, a recently developed Suzuki–Miyaura dispersion polymerization method is adopted to synthesize core–shell particles, in which a conjugated polymer shell is grown onto non-conjugated organic and inorganic colloidal templates.
View Article and Find Full Text PDF