Publications by authors named "Jan B C Pettersson"

Dust storms in arid regions transport desert salts and dust, affecting geochemical processes, atmospheric chemistry, climate, and human health. This study examines how the gas-salt interface composition of desert salt changes with varying relative humidity (RH), using ambient pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and molecular dynamics (MD) simulations. Ion chromatography analysis of desert salt indicates it is predominantly composed of sulfate, sodium, and magnesium ions, with traces of calcium, chloride, nitrate, and potassium ions.

View Article and Find Full Text PDF

Images from scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) are informative and useful to understand the chemical composition and mixing state of solid materials. Positive matrix factorization (PMF) is a multivariate factor analysis technique that has been used in many applications, and the method is here applied to identify factors that can describe common features between elemental SEM-EDX maps. The procedures of converting both graphics and digital images to PMF input files are introduced, and the PMF analysis is exemplified with an open-access PMF program.

View Article and Find Full Text PDF

Gas-particle interfaces are chemically active environments. This study investigates the reactivity of SO on NaCl surfaces using advanced experimental and theoretical methods with a NHCl substrate also examined for cation effects. Results show that NaCl surfaces rapidly convert to NaSO with a new chlorine component when exposed to SO under low humidity.

View Article and Find Full Text PDF

Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities.

View Article and Find Full Text PDF

A surface-promoted sulfate-reducing ammonium oxidation reaction was discovered to spontaneously take place on common inorganic aerosol surfaces undergoing solvation. Several key intermediate species—including elemental sulfur (S), bisulfide (HS), nitrous acid (HONO), and aqueous ammonia [NH]—were identified as reaction components associated with the solvation process. Depth profiles of relative species abundance showed the surface propensity of key species.

View Article and Find Full Text PDF

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CHC(NH)(CH)CHOH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning () = 5.2 × 10 × exp (505/) cm molecule s to the experimental value = 2.

View Article and Find Full Text PDF

Organic-organic interactions play important roles in secondary organic aerosol formation, but the interactions are complex and poorly understood. Here, we use environmental molecular beam experiments combined with molecular dynamics simulations to investigate the interactions between methanol and nopinone, as atmospheric organic proxies. In the experiments, methanol monomers and clusters are sent to collide with three types of surfaces, i.

View Article and Find Full Text PDF

Accommodation of vapor-phase water molecules into ice crystal surfaces is a fundamental process controlling atmospheric ice crystal growth. Experimental studies investigating the accommodation process with various techniques report widely spread values of the water accommodation coefficient on ice, α, and the results on its potential temperature dependence are inconclusive. We run molecular dynamics simulations of molecules condensing onto the basal plane of ice using the TIP4P/Ice empirical force field and characterize the accommodated state from this molecular perspective, utilizing the interaction energy, the tetrahedrality order parameter, and the distance below the instantaneous interface as criteria.

View Article and Find Full Text PDF

As an innovative analytical approach ordinal analysis is applied to positive matrix factorization (PMF) analysis outputs to identify the most important species and factors in chemical ionization mass spectrometry (CIMS) data. The procedure and outcome of the ordinal analysis facilitate further automated data analysis. Prior to standard PMF analysis, CIMS data were normalized to assure equal comparisons and facilitate the analysis process.

View Article and Find Full Text PDF

Modern small-scale biomass burners have been recognized as an important renewable energy source because of the economic and environmental advantages of biomass over fossil fuels. However, the characteristics of their gas and particulate emissions remain incompletely understood, and there is substantial uncertainty concerning their health and climate impacts. Here, we present online measurements conducted during the operation of a residential wood-burning boiler.

View Article and Find Full Text PDF

Water and organics are omnipresent in the atmosphere, and their interactions influence the properties and lifetime of both aerosols and clouds. Nopinone is one of the major reaction products formed from β-pinene oxidation, a compound emitted by coniferous trees, and it has been found in both gas and particle phases in the atmosphere. Here, we investigate the interactions between water molecules and nopinone surfaces by combining environmental molecular beam (EMB) experiments and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The processes of molecular clustering, condensation, nucleation, and growth of bulk materials on surfaces, represent a spectrum of vapor-surface interactions that are important to a range of physical phenomena. Here, we describe studies of the initial stages of methanol condensation on graphite, which is a simple model system where gas-surface interactions can be described in detail using combined experimental and theoretical methods. Experimental molecular beam methods and computational molecular dynamics simulations are used to investigate collision dynamics and surface accommodation of methanol molecules and clusters at temperatures from 160 K to 240 K.

View Article and Find Full Text PDF

The interactions between water molecules and condensed n-butanol surfaces are investigated at temperatures from 160 to 240 K using the environmental molecular beam experimental method and complementary molecular dynamics (MD) simulations. In the experiments hyperthermal water molecules are directed onto a condensed n-butanol layer and the flux from the surface is detected in different directions. A small fraction of the water molecules scatters inelastically from the surface while losing 60-90% of their initial kinetic energy in collisions, and the angular distributions of these molecules are broad for both solid and liquid surfaces.

View Article and Find Full Text PDF

Processes involving atmospheric aerosol and cloud particles are affected by condensation of organic compounds that are omnipresent in the atmosphere. On ice particles, organic compounds with hydrophilic functional groups form hydrogen bonds with the ice and orient their hydrophobic groups away from the surface. The organic layer has been expected to constitute a barrier to gas uptake, but recent experimental studies suggest that the accommodation of water molecules on ice is only weakly affected by condensed short-chain alcohol layers.

View Article and Find Full Text PDF

The OH-initiated atmospheric degradation of tert-butylamine (tBA), (CH)CNH, was investigated in a detailed quantum chemistry study and in laboratory experiments at the European Photoreactor (EUPHORE) in Spain. The reaction was found to mainly proceed via hydrogen abstraction from the amino group, which in the presence of nitrogen oxides (NO ), generates tert-butylnitramine, (CH)CNHNO, and acetone as the main reaction products. Acetone is formed via the reaction of tert-butylnitrosamine, (CH)CNHNO, and/or its isomer tert-butylhydroxydiazene, (CH)CN═NOH, with OH radicals, which yield nitrous oxide (NO) and the (CH)Ċ radical.

View Article and Find Full Text PDF

Water and organic molecules are omnipresent in the environment, and their interactions are of central importance in many Earth system processes. Here we investigate molecular-level interactions between water and a nopinone surface using an environmental molecular beam (EMB) technique. Nopinone is a major reaction product formed during oxidation of β-pinene, a prominent compound emitted by coniferous trees, which has been found in both the gas and particle phases of atmospheric aerosol.

View Article and Find Full Text PDF

Molecular beam techniques are commonly used to obtain detailed information about reaction dynamics and kinetics of gas-surface interactions. These experiments are traditionally performed in vacuum and the dynamic state of surfaces under ambient conditions is thereby excluded from detailed studies. Herein we describe the development and demonstration of a new vacuum-gas interface that increases the accessible pressure range in environmental molecular beam (EMB) experiments.

View Article and Find Full Text PDF

The detailed interactions of nitrogen oxides with ice are of fundamental interest and relevance for chemistry in cold regions of the atmosphere. Here, the interactions of NO, NO2, N2O4, and N2O5 with ice surfaces at temperatures between 93 and 180 K are investigated with molecular beam techniques. Surface collisions are observed to result in efficient transfer of kinetic energy and trapping of molecules on the ice surfaces.

View Article and Find Full Text PDF

Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice.

View Article and Find Full Text PDF

There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS).

View Article and Find Full Text PDF

Adsorbed organic compounds modify the properties of environmental interfaces with potential implications for many Earth system processes. Here, we describe experimental studies of water interactions with acetic acid (AcOH) layers on ice and graphite surfaces at temperatures from 186 to 200 K. Hyperthermal D2O water molecules are efficiently trapped on all of the investigated surfaces, with only a minor fraction that scatters inelastically after an 80% loss of kinetic energy to surface modes.

View Article and Find Full Text PDF

The interaction of water vapor with ice remains incompletely understood despite its importance in environmental processes. A particular concern is the probability for water accommodation on the ice surface, for which results from earlier studies vary by more than 2 orders of magnitude. Here, we apply an environmental molecular beam method to directly determine water accommodation and desorption kinetics on ice.

View Article and Find Full Text PDF

Pre-requisite for reliable O(3) risk assessment for plants is determination of stomatal O(3) uptake. One unaddressed uncertainty in this context relates to transpiration-induced molecular collisions impeding stomatal O(3) influx. This study quantifies, through physical modelling, the error made when estimating stomatal O(3) flux without accounting for molecular collisions arising from transpiratory mass flow of gas out of the leaf.

View Article and Find Full Text PDF

Cloud studies were carried out with a polarimetric bistatic lidar setup at the Arctic Lidar Observatory for Middle Atmosphere Research in Andenes (69 degrees N, 16 degrees E), Norway. Measurements were performed at altitudes between 1.5 and 10.

View Article and Find Full Text PDF

The kinetics of chlorine interactions with ice at temperatures between 103 and 165 K have been studied using molecular beam techniques. The Cl(2) trapping probability is found to be unity at thermal incident energies, and trapping is followed by rapid desorption. The residence time on the surface is less than 25 microg at temperatures above 135 K and approaches 1 s around 100 K.

View Article and Find Full Text PDF