Publications by authors named "Jan Altman"

Plants store nonstructural carbohydrates (NSCs) like starch, fructans and soluble sugars to support metabolism, stress tolerance and defence during low photosynthesis, ultimately influencing their growth and longevity. However, the relationship between NSC composition and growth or persistence in wild plants remains unclear. This study explores trade-offs between growth, longevity and NSCs in 201 plant species across diverse climates in the Western USA, spanning 500-4300 m in elevation and 80-1000 mm in precipitation.

View Article and Find Full Text PDF

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

Following European exploration of the Americas in the late 15th century, new plants rapidly spread across Europe. Simultaneously, plants from Asia and Africa arrived. Initially, they were grown in ornamental gardens but later became integral to major production centres, significantly transforming European agriculture.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding tree growth in tropical forests is vital for carbon sequestration and assessing the impact of deforestation in these regions.
  • A study in Mount Cameroon examined how climatic factors, like rainfall and temperature, affect the growth of 28 tree species across different elevations and seasonal conditions from 2015 to 2018.
  • Findings indicated that tree growth was limited by both too little and too much water, with growth rates influenced by soil moisture levels and nighttime temperatures, highlighting the complexity of forest responses to climate variability.
View Article and Find Full Text PDF

Increases in temperatures and atmospheric CO2 concentration influence the growth performance of trees worldwide. The direction and intensity of tree growth and physiological responses to changing climate do, however, vary according to environmental conditions. Here we present complex, long-term, tree-physiological responses to unprecedented temperature increase in East Asia.

View Article and Find Full Text PDF
Article Synopsis
  • Forests are facing higher risks of tree death due to drought, which can alter species composition and impact the global carbon cycle, particularly with deciduous oaks replacing conifers in the Northern Hemisphere.
  • This study aimed to assess the legacy effects of extreme drought on oak growth from 1940 to 2016, examining variations across 21 species and multiple regions, revealing that negative effects can last from 1 to 5 years after drought, especially in dry areas.
  • Results showed that repeated droughts significantly influenced oak growth, with species like Q. faginea exhibiting strong negative responses, while some oaks in wetter regions experienced growth increases post-drought, suggesting diverse resilience based on climate factors.
View Article and Find Full Text PDF

Background And Aims: Understanding anatomical variations across plant phylogenies and environmental gradients is vital for comprehending plant evolution and adaptation. Previous studies on tropical woody plants have paid limited attention to quantitative differences in major xylem tissues, which serve specific roles in mechanical support (fibres), carbohydrate storage and radial conduction (radial parenchyma, rays), wood capacitance (axial parenchyma) and water transport (vessels). To address this gap, we investigate xylem fractions in 173 tropical tree species spanning 134 genera and 53 families along a 2200-m elevational gradient on Mount Cameroon, West Africa.

View Article and Find Full Text PDF

Background And Aims: Understanding biomass allocation among plant organs is crucial for comprehending plant growth optimization, survival and responses to the drivers of global change. Yet, the mechanisms governing mass allocation in vascular plants from extreme elevations exposed to cold and drought stresses remain poorly understood.

Methodology: We analysed organ mass weights and fractions in 258 Himalayan herbaceous species across diverse habitats (wetland, steppe, alpine), growth forms (annual, perennial taprooted, rhizomatous and cushiony) and climatic gradients (3500-6150 m elevation) to explore whether biomass distribution adhered to fixed allometric or optimal partitioning rules, and how variations in size, phylogeny and ecological preferences influence their strategies for resource allocation.

View Article and Find Full Text PDF

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014.

View Article and Find Full Text PDF

Temperature is a fundamental driver of species distribution and ecosystem functioning. Yet, our knowledge of the microclimatic conditions experienced by organisms inside tropical forests remains limited. This is because ecological studies often rely on coarse-gridded temperature estimates representing the conditions at 2 m height in an open-air environment (i.

View Article and Find Full Text PDF

Global climate change is having significant effects on plant growth patterns and mountain plants can be particularly vulnerable to accelerated warming. Rising temperatures are releasing plants from cold limitation, such as at high elevations and latitudes, but can also induce drought limitation, as documented for trees from lower elevations and latitudes. Here we test these predictions using a unique natural experiment with Himalayan alpine shrub Rhododendron anthopogon and its growth responses to changing climate over a large portion of its latitudinal and elevational ranges, including steep precipitation and temperature gradients.

View Article and Find Full Text PDF

Forests are continuously altered by disturbances. Yet, knowledge of global pattern of forest disturbance agents, its drivers, and shifts under changing climate remain scarce. Here we present a meta-analysis of current and projected (+2° and + 4 °C) distribution of forest disturbance agents causing immediate tree mortality (i.

View Article and Find Full Text PDF

Boreal forests represent an important carbon sink and, therefore, significantly contribute to climate change mitigation. Tree-ring width series of boreal species reflect climate variation at the moment of tree-ring formation but also lagged climatic effects from dormancy preceding tree-ring formation and antecedent growing seasons. However, little is known about how the growth sensitivity to climate in specific intra-annual periods varies across the landscape.

View Article and Find Full Text PDF

With global warming, tropical cyclones (TCs) are moving to northern latitudes with devastating effects on boreal forests and significant ecological and socioeconomic consequences in the northern hemisphere. Recently, TCs disturbances have been documented in the northern temperate and even the southern boreal forest zone. Here we report and quantify the impact of TC Lingling (2019), which damaged the boreal forests >50° latitude in a remote area of Sakhalin Island, Northeast Asia.

View Article and Find Full Text PDF

Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the intensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species richness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs.

View Article and Find Full Text PDF
Article Synopsis
  • The latitudinal diversity gradient (LDG) reflects a global trend showing that species richness typically increases towards the tropics, but understanding its causes has been challenging due to insufficient data.
  • A new high-resolution map of local tree species richness was created using extensive global forest inventory data and local biophysical factors, analyzing around 1.3 million sample plots.
  • Findings indicate that annual mean temperature is a significant predictor of tree species richness, aligning with the metabolic theory of biodiversity, but additional local factors also play a crucial role, especially in tropical regions.
View Article and Find Full Text PDF

Aim: Understanding the variation in community composition and species abundances (i.e., β-diversity) is at the heart of community ecology.

View Article and Find Full Text PDF

Tropical cyclones (TCs) are common disturbance agents in tropical and subtropical latitudes. With global warming, TCs began to move to northern latitudes, with devastating effects on boreal forests. However, it remains unclear where and when these extraordinary events occur and how they affect forest structure and ecosystem functioning.

View Article and Find Full Text PDF

Background And Aims: Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is available regarding their structural adaptations across evolutionary lineages and environmental conditions. To fill this knowledge gap, we investigated the variation of petiole morphology and anatomy of mainly European woody species to better understand the drivers of internal and external constraints in an evolutionary context.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

Species coexistence is a result of biotic interactions, environmental and historical conditions. The Janzen-Connell hypothesis assumes that conspecific negative density dependence (CNDD) is one of the local processes maintaining high species diversity by decreasing population growth rates at high densities. However, the contribution of CNDD to species richness variation across environmental gradients remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • * A study analyzing 44 montane sites across 12 African countries reveals that the average aboveground live tree biomass carbon (AGC) stock is 149.4 megagrams of carbon per hectare, which is higher than similar forests in the Neotropics and above default values set by the Intergovernmental Panel on Climate Change.
  • * Despite this carbon richness, African montane forests face threats, having lost about 0.8 million hectares of old-growth forest since 2000, emphasizing the need for conservation efforts to protect
View Article and Find Full Text PDF

Macrophytes have often been considered as a prospective tool for the elimination of cyanobacterial bloom, because they may produce chemical compounds that outcompete bloom-forming cyanobacteria. However, a comprehensive, unbiased overview of evidence to support this is missing. Moreover, studies into the effects of individual macrophyte species have often used different methodologies and, thus, cannot be compared.

View Article and Find Full Text PDF

The Canary Islands, an archipelago east of Morocco's Atlantic coast, present steep altitudinal gradients covering various climatic zones from hot deserts to subalpine Mediterranean, passing through fog-influenced cloud forests. Unlike the majority of the Canarian flora, Pinus canariensis C. Sm.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont05di82a8ugm9frqmacp9f90kb4v0g26): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once