Publications by authors named "Jan A van Leerdam"

A key challenge in the environmental and exposure sciences is to establish experimental evidence of the role of chemical exposure in human and environmental systems. High resolution and accurate tandem mass spectrometry (HRMS) is increasingly being used for the analysis of environmental samples. One lauded benefit of HRMS is the possibility to retrospectively process data for (previously omitted) compounds that has led to the archiving of HRMS data.

View Article and Find Full Text PDF

For the prioritization of more than 5200 anthropogenic chemicals authorized on the European market, we use a large scale liquid chromatography-high resolution mass spectrometry (LC-HRMS) suspect screening study. The prioritization is based on occurrence in 151 water samples including effluent, surface water, ground water and drinking water. The suspect screening linked over 700 detected compounds with known accurate masses to one or multiple suspects.

View Article and Find Full Text PDF

The chemical water quality is often assessed by screening for a limited set of target chemicals. This 'conventional' target analysis approach inevitably misses chemicals present in the samples. In this study a 'broad' target screening approach for water quality assessment using high resolution and accurate mass spectrometry (HR MS) was applied to detect a wide variety of organic chemicals in 42 groundwater samples.

View Article and Find Full Text PDF

In the past two decades much research effort has focused on the occurrence, effects, and risks of estrogenic compounds. However, increasing emissions of new emerging compounds may also affect the action of hormonal pathways other than the estrogenic hormonal axis. Recently, a suite of novel CALUX bioassays has become available that enables looking further than estrogenic effects only.

View Article and Find Full Text PDF

Several water companies in The Netherlands use a combination of specifically targeted compound analysis (HPLC-UV and GC-MS) and effect monitoring (continuous biotests) to monitor source water quality and to screen for unknown compounds. In spring 2004, the Daphnia biomonitor at Keizersveer monitoring station alongside the River Meuse recorded several alarms. In this study, the combination of HPLC-DAD and Q-TOF MS techniques was used to identify the so-far unknown microcontaminant related to this Daphnia alarm as 3-cyclohexyl-1,1-dimethylurea.

View Article and Find Full Text PDF