Publications by authors named "Jan A A M Kamps"

Background: Sepsis is an uncontrolled systemic inflammatory response to an infection that can result in acute failure of the function of the lung called acute respiratory distress syndrome. Leukocyte recruitment is an important hallmark of acute lung failure in patients with sepsis. Endothelial cells (EC) participate in this process by facilitating tethering, rolling, adhesion, and transmigration of leukocytes via adhesion molecules on their cell surface.

View Article and Find Full Text PDF

Sepsis is a dysregulated systemic inflammatory response to an infection, which can lead to multiple organ dysfunction syndrome that includes the kidney. Leukocyte recruitment is an important process of the host immune defense in response to sepsis. Endothelial cells (EC) actively regulate leukocyte recruitment by expressing adhesion molecules following the activation of dedicated intracellular signal transduction pathways.

View Article and Find Full Text PDF

Increased understanding of chronic inflammatory diseases and the role of endothelial cell (EC) activation herein, have urged interest in sophisticated strategies to therapeutically intervene in activated EC to treat these diseases. Liposome-mediated delivery of therapeutic siRNA in inflammation-activated EC is such a strategy. In this study, we describe the design and characterisation of two liposomal siRNA delivery systems formulated with the cationic MC3 lipid or MC3/SAINT mixed lipids, referred to as MC3-O-Somes (MOS) and MC3/SAINT-O-Somes (MSS).

View Article and Find Full Text PDF

Background: Proteinuria is associated with many glomerular diseases and a risk factor for the progression to renal failure. We previously showed that heparanase (HPSE) is essential for the development of proteinuria, whereas peroxisome proliferator-activated receptor ɣ (PPARɣ) agonists can ameliorate proteinuria. Since a recent study showed that PPARɣ regulates HPSE expression in liver cancer cells, we hypothesized that PPARɣ agonists exert their reno-protective effect by inhibiting glomerular HPSE expression.

View Article and Find Full Text PDF

Several fatty acids, in particular saturated fatty acids like palmitic acid, cause lipotoxicity in the context of non-alcoholic fatty liver disease . Unsaturated fatty acids (e.g.

View Article and Find Full Text PDF

Low transfection efficiency in endothelial cells (EC) is still a bottleneck for the majority of siRNA-based vascular delivery approaches. In this work, we developed a lipid-based nanoparticle (LNP) formulation based on a combination of a permanently charged cationic lipid-DOTAP and a conditionally ionized cationic lipid-MC3 (DOTAP/MC3) for the enhanced delivery of siRNA into EC. Compared with a single DOTAP or MC3-based benchmark LNP, we demonstrated that the DOTAP/MC3 LNP formulation shows the best transfection efficiency both in primary EC in vitro and in endothelium in zebrafish.

View Article and Find Full Text PDF

Microvascular endothelial cells in the kidney have been a neglected cell type in sepsis-induced acute kidney injury (sepsis-AKI) research; yet, they offer tremendous potential as pharmacological targets. As endothelial cells in distinct cortical microvascular segments are highly heterogeneous, this Review focuses on endothelial cells in their anatomical niche. In animal models of sepsis-AKI, reduced glomerular blood flow has been attributed to inhibition of endothelial nitric oxide synthase activation in arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion is associated with epithelial redox stress.

View Article and Find Full Text PDF

Glomerular endothelial cell (GEnC) dysfunction is important in the pathogenesis of glomerular sclerotic diseases, including Focal Segmental Glomerulosclerosis (FSGS) and overt diabetic nephropathy (DN). GEnCs form the first cellular barrier in direct contact with cells and factors circulating in the blood. Disturbances in these circulating factors can induce GEnC dysfunction.

View Article and Find Full Text PDF

Microvascular endothelial cells play a pivotal role in the pathogenesis of sepsis-induced inflammatory responses and multiple organ failure. Therefore, they represent an important target for pharmacological intervention in the treatment of sepsis. Glucocorticosteroids were widely used in the treatment of sepsis but vast evidence to support their systemic use is lacking.

View Article and Find Full Text PDF

Macrophages are key players in the pathogenesis of large-vessel vasculitis (LVV) and may serve as a target for diagnostic imaging of LVV. The radiotracer, F-FDG has proven to be useful in the diagnosis of giant cell arteritis (GCA), a form of LVV. Although uptake of F-FDG is high in activated macrophages, it is not a specific radiotracer as its uptake is high in any proliferating cell and other activated immune cells resulting in high non-specific background radioactivity especially in aging and atherosclerotic vessels which dramatically lowers the diagnostic accuracy.

View Article and Find Full Text PDF

Dactolisib (NVP-BEZ235, also referred to as: 'BEZ235' or 'BEZ') is a dual mTOR/PI3K inhibitor that is of potential interest in the treatment of inflammatory disorders. This work focuses on formulation of BEZ-loaded polymeric nanoparticles composed of a blend of poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-2000 (PLGA-PEG). The nanoparticles were prepared by an oil/water emulsion solvent evaporation method, and were subsequently characterized for yield, encapsulation efficiency, morphology, particle size, drug-polymer interaction and in vitro drug release profiles.

View Article and Find Full Text PDF

Activated endothelial cells play a pivotal role in the pathology of inflammatory disorders and thus present a target for therapeutic intervention by drugs that intervene in inflammatory signaling cascades, such as rapamycin (mammalian target of rapamycin (mTOR) inhibitor). In this study we developed anti-E-selectin immunoliposomes for targeted delivery to E-selectin over-expressing tumor necrosis factor-α (TNF-α) activated endothelial cells. Liposomes composed of 1,2-dipalmitoyl-sn-glycero-3.

View Article and Find Full Text PDF

The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet-derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor (aFGF), and basic FGF were compared in a tube formation assay.

View Article and Find Full Text PDF

Together with mesangial cells, glomerular endothelial cells and the basement membrane, podocytes constitute the glomerular filtration barrier (GFB) of the kidney. Podocytes play a pivotal role in the progression of various kidney-related diseases such as glomerular sclerosis and glomerulonephritis that finally lead to chronic end-stage renal disease. During podocytopathies, the slit-diaphragm connecting the adjacent podocytes are detached leading to severe loss of proteins in the urine.

View Article and Find Full Text PDF

Interference with acute and chronic inflammatory processes by means of delivery of siRNAs into microvascular endothelial cells at a site of inflammation demands specific, non-toxic and effective siRNA delivery system. In the current work we describe the design and characterization of siRNA carriers based on cationic pyridinium-derived lipid 1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride) (SAINT-C18) and the transfection enhancer protamine, complexed with siRNA/carrier DNA or siRNA only. These carriers, called SAINT-liposome-polycation-DNA (S-LPD) and SAINT-liposome-polycation (S-LP), have a high efficiency of siRNA encapsulation, low cellular toxicity, and superior efficacy of gene downregulation in endothelial cells in vitro as compared to DOTAP-LPD.

View Article and Find Full Text PDF

Circulatory shock and resuscitation are associated with systemic hemodynamic changes, which may contribute to the development of MODS (multiple organ dysfunction syndrome). In this study, we used an in vitro flow system to simulate the consecutive changes in blood flow as occurring during hemorrhagic shock and resuscitation in vivo. We examined the kinetic responses of different endothelial genes in human umbilical vein endothelial cells preconditioned to 20 dyne/cm unidirectional laminar shear stress for 48 h to flow cessation and abrupt reflow, respectively, as well as the effect of flow cessation and reflow on tumor necrosis factor-α (TNF-α)-induced endothelial proinflammatory activation.

View Article and Find Full Text PDF

Aims: Pulmonary arterial hypertension (PAH) is characterized by the development of unique neointimal lesions in the small pulmonary arteries, leading to increased right ventricular (RV) afterload and failure. Novel therapeutic strategies are needed that target these neointimal lesions. Recently, the transcription factor Egr-1 (early growth response protein 1) was demonstrated to be up-regulated early in experimental neointimal PAH.

View Article and Find Full Text PDF

The synthesis and structure-activity relationships of novel 4-(4'-fluorophenyl)imidazoles as selective p38α MAPK, CK1δ and JAK2 inhibitors with improved water solubility are described. Microwave-assisted multicomponent reactions afforded 4-fluorophenyl-2,5-disubstituted imidazoles. Carboxylate and phosphonate groups were introduced via 'click' reactions.

View Article and Find Full Text PDF

In recent years much research in RNA nanotechnology has been directed to develop an efficient and clinically suitable delivery system for short interfering RNA (siRNA). The current study describes the in vivo siRNA delivery using PEGylated antibody-targeted SAINT-based-lipoplexes (referred to as antibody-SAINTPEGarg/PEG2%), which showed superior siRNA delivery capacity and effective down-regulation of VE-cadherin gene expression in vitro in inflammation-activated primary endothelial cells of different vascular origins. PEGylation of antibody-SAINTPEGarg resulted in more desirable pharmacokinetic behavior than that of non-PEGylated antibody-SAINTPEGarg.

View Article and Find Full Text PDF

The design, synthesis and biological evaluation of novel triazolyl p38α MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a 'click' reaction of functional azides with 2-alkynyl imidazoles and isosteric oxazoles to generate two small libraries of 1,4-disubstituted 1,2,3-triazolyl p38α MAPK inhibitors. Triazoles with low IC50 values and desired physicochemical properties were screened for in vitro downregulation of proinflammatory gene expression and were formulated in SAINT-O-Somes.

View Article and Find Full Text PDF

The pivotal role of endothelial cells in the pathology of inflammatory diseases raised interest in the development of short interfering RNA (siRNA) delivery devices for selective pharmacological intervention in the inflamed endothelium. The current study demonstrates endothelial specific delivery of siRNAs and downregulation of inflammatory genes in activated endothelium in vivo by applying a novel type of targeted liposomes based on the cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride). To create specificity for inflamed endothelial cells, these so-called SAINT-O-Somes were harnessed with antibodies against vascular cell adhesion protein 1 (VCAM-1).

View Article and Find Full Text PDF

The endothelium represents an attractive therapeutic target due to its pivotal role in many diseases including chronic inflammation and cancer. Small interfering RNAs (siRNAs) specifically interfere with the expression of target genes and are considered an important new class of therapeutics. However, due to their size and charge, siRNAs do not spontaneously enter unperturbed endothelial cells (EC).

View Article and Find Full Text PDF

Many studies on the molecular control underlying normal cell behavior and cellular responses to disease stimuli and pharmacological intervention are conducted in single-cell culture systems, while the read-out of cellular engagement in disease and responsiveness to drugs in vivo is often based on overall tissue responses. As the majority of drugs under development aim to specifically interact with molecular targets in subsets of cells in complex tissues, this approach poses a major experimental discrepancy that prevents successful development of new therapeutics. In this review, we address the shortcomings of the use of artificial (single) cell systems and of whole tissue analyses in creating a better understanding of cell engagement in disease and of the true effects of drugs.

View Article and Find Full Text PDF

Activated endothelial cells play a pivotal role in the pathology of inflammatory diseases and present a rational target for therapeutic intervention by endothelial specific delivery of short interfering RNAs (siRNA). This study demonstrates the potential of the recently developed new generation of liposomes based on cationic amphiphile SAINT-C18 (1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride) for functional and selective delivery of siRNA into inflamed primary endothelial cells. To create specificity for inflamed endothelial cells, these so-called SAINT-O-Somes were harnessed with antibodies against vascular cell adhesion protein 1 (VCAM-1) or respectively E-selectin and tested in TNF-α activated primary endothelial cells from venous and aortic vascular beds.

View Article and Find Full Text PDF