Publications by authors named "Jamshid Pirgazi"

Microarray data provide lots of information regarding gene expression levels. Due to the large amount of such data, their analysis requires sufficient computational methods for identifying and analyzing gene regulation networks; however, researchers in this field are faced with numerous challenges such as consideration for too many genes and at the same time, the limited number of samples and their noisy nature of the data. In this paper, a hybrid method base on fuzzy cognitive map and compressed sensing is used to identify interactions between genes.

View Article and Find Full Text PDF

Drug discovery relies on predicting drug-target interaction (DTI), which is an important challenging task. The purpose of DTI is to identify the interaction between drug chemical compounds and protein targets. Traditional wet lab experiments are time-consuming and expensive, that's why in recent years, the use of computational methods based on machine learning has attracted the attention of many researchers.

View Article and Find Full Text PDF

Drug-target interaction prediction is a vital stage in drug development, involving lots of methods. Experimental methods that identify these relationships on the basis of clinical remedies are time-taking, costly, laborious, and complex introducing a lot of challenges. One group of new methods is called computational methods.

View Article and Find Full Text PDF

Lysine malonylation is one of the most important post-translational modifications (PTMs). It affects the functionality of cells. Malonylation site prediction in proteins can unfold the mechanisms of cellular functionalities.

View Article and Find Full Text PDF

Background: Wet-lab experiments for identification of interactions between drugs and target proteins are time-consuming, costly and labor-intensive. The use of computational prediction of drug-target interactions (DTIs), which is one of the significant points in drug discovery, has been considered by many researchers in recent years. It also reduces the search space of interactions by proposing potential interaction candidates.

View Article and Find Full Text PDF

A central problem of systems biology is the reconstruction of Gene Regulatory Networks () by the use of time series data. Although many attempts have been made to design an efficient method for inference, providing a best solution is still a challenging task. Existing noise, low number of samples, and high number of nodes are the main reasons causing poor performance of existing methods.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. It was first detected in China and was rapidly spread to other countries. Several thousands of whole genome sequences of SARS-CoV-2 have been reported and it is important to compare them and identify distinctive evolutionary/mutant markers.

View Article and Find Full Text PDF

Feature selection problem is one of the most significant issues in data classification. The purpose of feature selection is selection of the least number of features in order to increase accuracy and decrease the cost of data classification. In recent years, due to appearance of high-dimensional datasets with low number of samples, classification models have encountered over-fitting problem.

View Article and Find Full Text PDF

In this study, in order to deal with the noise and uncertainty in gene expression data, learning networks, especially Bayesian networks, that have the ability to use prior knowledge, were used to infer gene regulatory network. Learning networks are methods that have the structure of the network and a learning process to obtain relationships. One of the methods which have been used for measuring the relationship between genes is the correlation metrics, but the high correlated genes not necessarily mean that they have causal effect on each other.

View Article and Find Full Text PDF

The reconstruction of the topology of gene regulatory networks (GRNs) using high throughput genomic data such as microarray gene expression data is an important problem in systems biology. The main challenge in gene expression data is the high number of genes and low number of samples; also the data are often impregnated with noise. In this paper, in dealing with the noisy data, Kalman filter based method that has the ability to use prior knowledge on learning the network was used.

View Article and Find Full Text PDF