Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant was first discovered, several variants showing different infectivity and immune responses have emerged globally. As the conventional method, whole-genome sequencing following polymerase chain reaction (PCR) is currently used for diagnosis of SARS-CoV-2 mutations. However, these conventional PCR-based direct DNA sequencing methods are time-consuming, complicated, and require expensive DNA sequencing modules.
View Article and Find Full Text PDFLow-band-gap push-pull copolymers are promising donor materials for bulk heterojunction organic solar cells. One of the best push-pull copolymers are composed of bridged dithiophene pushing units and benzothiadiazole (BT) pulling units, but BT has no proper position to accommodate alkyl side chains introduced to enhance the solubility of the resulting copolymers in organic solvents. On the other hand, N-alkylthienopyrroledione (TPD), which has an alkyl side chain attached to its pyrrole moiety, has been combined with various bridged dithiophene pushing units to give high-solubility donor polymers whose power conversion efficiencies are higher than those of the BT-based polymers especially after a morphology control.
View Article and Find Full Text PDFWe investigated the interfacial electronic properties of self-assembled monolayers (SAM)-modified Au metal surface at elevated temperatures. We observed that the work functions of the Au metal surfaces modified with SAMs changed differently under elevated-temperature conditions based on the type of SAMs categorized by three different features based on chemical anchoring group, molecular backbone structure, and the direction of the dipole moment. The temperature-dependent work function of the SAM-modified Au metal could be explained in terms of the molecular binding energy and the thermal stability of the SAMs, which were investigated with thermal desorption spectroscopic measurements and were explained with molecular modeling.
View Article and Find Full Text PDFMelamine and its hydrolysis products (ammeline, ammelide, and cyanuric acid) recently attracted great attention as major food contaminants. Developing analytical tools to quantify them requires exact knowledge of their acid dissociation constants (pK(a) values). Herein, we calculated the pK(a) values of these melamine derivatives in water, using a density functional theory quantum mechanical method [B3LYP/6-311++G(d,p)] in combination with the Poisson-Boltzmann continuum solvation model.
View Article and Find Full Text PDF