Publications by authors named "Jamin DeProto"

Background: Recent studies of synapse form and function highlight the importance of the actin cytoskeleton in regulating multiple aspects of morphogenesis, neurotransmission, and neural plasticity. The conserved actin-associated protein Enabled (Ena) is known to regulate development of the Drosophila larval neuromuscular junction through a postsynaptic mechanism. However, the functions and regulation of Ena within the presynaptic terminal has not been determined.

View Article and Find Full Text PDF

The major lineages of mammals (Eutheria, Metatheria, and Monotremata) diverged more than 100 million years ago and have undergone independent changes in the neocortex. We found that adult South American gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii) possess a significantly lower number of cerebral cortical neurons compared with the mouse (Mus musculus). To determine whether the difference is reflected in the development of the cortical germinal zones, the location of progenitor cell divisions was examined in opossum, tammar wallaby, and rat.

View Article and Find Full Text PDF

There is evidence for interaction between the developing circulatory and nervous systems. Blood vessels provide a supporting niche in regions of adult neurogenesis. Here we present a systematic analysis of vascular development in the embryonic murine cortex and demonstrate that dividing cells, including Tbr2-positive intermediate progenitor cells, are closer to the vasculature than expected from a random distribution.

View Article and Find Full Text PDF

Building the brain is like erecting a house of cards. The early connections provide the foundation of the adult structure, and disruption of these may be the source of many developmental flaws. Cerebral cortical developmental disorders (including schizophrenia and autism) and perinatal injuries involve cortical neurons with early connectivity.

View Article and Find Full Text PDF

The mammalian neocortex consists of six layers. By contrast, the reptilian and avian cortices have only three, which are believed to be equivalent to layers I, V and VI of mammals. In mammals, the majority of cortical cell proliferation occurs in the ventricular and subventricular zones, but there are a small number of scattered individual divisions throughout the cortex.

View Article and Find Full Text PDF

Axonal transport is required for the elaboration and maintenance of synaptic morphology and function. Liprin-alphas are scaffolding proteins important for synapse structure and electrophysiology. A reported interaction with Kinesin-3 (Kif1a) suggested Liprin-alpha may also be involved in axonal transport.

View Article and Find Full Text PDF

Here, we examine the synaptic function of the receptor protein tyrosine phosphatase (RPTP), Dlar, and an associated intracellular protein, Dliprin-alpha, at the Drosophila larval neuromuscular junction. We show that Dliprin-alpha and Dlar are required for normal synaptic morphology. We also find that synapse complexity is proportional to the amount of Dlar gene product, suggesting that Dlar activity determines synapse size.

View Article and Find Full Text PDF