Publications by authors named "Jamilur Talukder"

Background: In the chronically inflamed rabbit small intestine, brush border membrane (BBM) Na-glutamine co-transport is inhibited in villus cells (mediated by B0AT1), while it is stimulated in crypt cells (mediated by SN2/SNAT5). How mast cells, known to be enhanced in the chronically inflamed intestine, may regulate B0AT1 in villus and SN2/SNAT5 in crypt cell is unknown. Thus, the aim of the present study is to determine the regulation of B0AT1 and SN2/SNAT5 by mast cells during chronic enteritis.

View Article and Find Full Text PDF

Various immunoinflammatory cytokines are produced during chronic intestinal inflammation, which inhibits Na(+)-glucose cotransport (SGLT1) in villus cells. Lactoferrin (Lf), abundantly present in colostrum, is a multifunctional glycoprotein that is absorbed by receptor-mediated transcytosis in humans and animals and has been shown to exert anti-inflammatory effects. Therefore, this study aimed to examine whether Lf would prevent PGE2 effect on SGLT1 for glucose absorption in enterocytes.

View Article and Find Full Text PDF

Glutamine (Gln), a preferred fuel source for enterocytes, is critical for intestinal epithelial cell integrity and barrier function. Chronic enteritis inhibits apical Na(+)-Gln cotransport. It is not known whether inflammatory cytokines that are secreted during inflammation inhibit Na(+)-Gln cotransport.

View Article and Find Full Text PDF

Although both Kcnn4c and Kcnma1 channels are present on colonic mucosal membranes, only Kcnma1 has been suggested to mediate K(+) secretion in the colon. Therefore, studies were initiated to investigate the relative roles of Kcnn4c and Kcnma1 in mediating aldosterone (Na-free diet)-induced K(+) secretion. Mucosal to serosal (m-s), serosal to mucosal (s-m), and net (86)Rb(+) (K(+) surrogate) fluxes as well as short circuit currents (I(sc); measure of net ion movement) were measured under voltage clamp condition in rat distal colon.

View Article and Find Full Text PDF

In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal inflammation, we used rat intestinal epithelial cell (IEC-18) monolayers to determine the mechanism of regulation of Na-alanine cotransport (alanine, serine, cysteine transporter 1: ASCT1) by LTD4.

View Article and Find Full Text PDF

Glutamine, the primary metabolic fuel for the mammalian small intestinal enterocytes, is primarily assimilated by Na-amino acid cotransporters. Although Na-solute cotransport has been shown to exist in the brush border membrane (BBM) of the absorptive villus cells, the identity of Na-glutamine cotransport in rabbit small intestinal villus cells was unknown. Na-dependent glutamine uptake is present in villus BBM vesicles.

View Article and Find Full Text PDF

We have characterized the Na-glutamine cotransporter in the rabbit intestinal crypt cell brush border membrane vesicles (BBMV). Substrate specificity experiments showed that crypt cell glutamine uptake is mediated by system N. Real-time PCR experiments showed that SN2 (SLC38A5) mRNA is more abundant in crypt cells compared with SN1 (SLC38A3), indicating that SN2 is the major glutamine transporter present in the apical membrane of the crypt cells.

View Article and Find Full Text PDF

Previous in vivo studies suggest that constitutive nitric oxide (cNO) can regulate Na- glucose cotransport (SGLT1) and Na-H exchange (NHE3) in rabbit intestinal villus cells. Whether these two primary Na absorbing pathways are directly regulated by cNO and the mechanisms of this regulation in the enterocyte is not known. Thus nontransformed rat small intestinal epithelial cells (IEC-18) were treated with N(G)-nitro-l-arginine methyl ester (l-NAME), which directly decreased cNO in these cells.

View Article and Find Full Text PDF

Lactoferrin (Lf), an iron-binding multifunctional glycoprotein, is abundantly present in colostrum and milk of different species such as humans, bovines, and mice. Our previous observation revealed that bovine colostral Lf is transported into the systemic circulation and cerebrospinal fluid from gut-lumen through receptor-mediated transcytosis in calves. Diarrhea caused by Escherichia coli is one of the important causes of infant morbidity and mortality in developing countries.

View Article and Find Full Text PDF