Charcoal rot is an important soilborne disease caused by a range of Macrophomina species, which affects a broad range of commercially important crops worldwide. Even though Macrophomina species are fungal pathogens of substantial economic importance, their mechanism of pathogenicity and host spectrum are poorly understood. There is an urgent need to better understand the biology, epidemiology, and evolution of Macrophomina species, which, in turn, will aid in improving charcoal rot management strategies.
View Article and Find Full Text PDFBackground: Silencing of transposable elements (TEs) is essential for maintaining genome stability. Plants use small RNAs (sRNAs) to direct DNA methylation to TEs (RNA-directed DNA methylation; RdDM). Similar mechanisms of epigenetic silencing in the fungal kingdom have remained elusive.
View Article and Find Full Text PDFRapid advancements in long-read sequencing technologies have transformed read lengths from bps to Mbps, which has enabled chromosome-scale genome assemblies. However, read lengths are now becoming limited by the extraction of pure high-molecular weight DNA suitable for long-read sequencing, which is particularly challenging in plants and fungi. To overcome this, we present a protocol collection; high-molecular weight DNA extraction, clean-up and size selection for long-read sequencing.
View Article and Find Full Text PDFMol Plant Microbe Interact
May 2020
is a soil-borne phytopathogenic fungus that causes charcoal rot in several plant species, including sorghum. We constructed a draft genome of isolate BRIP 70780a from sorghum, using long-read native DNA from MinION sequencing, which was error-corrected using short-read Illumina MiSeq reads. The draft genome, consisting of 22 contigs with an N of 4,257,441 bp, 99.
View Article and Find Full Text PDF