The European roe deer (Capreolus capreolus) is one of the most abundant ungulate species in Europe. Many studies have investigated its distribution, behavior, and ecology, but few have focused on its role as bioindicators for pollutants, particularly regarding antlers, which has been shown to indicate also deer physiology. The presence of geothermal power plants can induce accumulation of potentially polluting elements (such as Tl, S, and Pb).
View Article and Find Full Text PDFThis study describes the effects that Cu supplementation of late-gestating and lactating females (hinds) of Iberian red deer fed a balanced diet have on milk production, composition, and somatic cell count (SCC). Experimental hinds ( = 9) were subcutaneously injected every 42 days with Cu (0.83 mg Cu/kg body weight) from day 202 of gestation until the end of lactation (week 18).
View Article and Find Full Text PDFHorns are permanent structures projecting from the head of bovids, consisting of a bony horncore covered with a layer of skin and then a sheath of keratinous material showing variability of growth intensity based on nutrition. From the point of view of the horn's mechanical properties, the keratin sheath has been widely studied, but only a few studies have considered the complete structure of the horn and fewer studies have focused on the bony horncore and its characteristics. The latter showed the important role of the bony core, when cranial appendages are subject to mechanical stress (as happens during fighting).
View Article and Find Full Text PDFBone ash, collagen, Ca and P composition, are considered the main factors affecting mechanical properties in bones. However, a series of studies in bone and antler have shown that some trace minerals, such as manganese, may play a role whose importance exceeds what may be expected considering their low content. A previous study showed that a reduction in manganese in antlers during a year of late winter frosts led to generalized antler breakage in Spain, which included a reduction of 30% of cortical thickness, 27% reduction in impact energy, and 10% reduction in work to peak force.
View Article and Find Full Text PDF