Publications by authors named "Jamie Schiffer"

Free energy perturbation (FEP) methodologies have become commonplace methods for modeling potency in hit-to-lead and lead optimization stages of drug discovery. The conformational states of the initial poses of compounds for FEP+ calculations are often set up by alignment to a cocrystal structure ligand, but it is not clear if this method provides the best result for all proteins or all ligands. Not only are ligand conformational states potential variables in modeling compound potency in FEP but also the selection of crystallographic water molecules for inclusion in the FEP input structures can impact FEP models.

View Article and Find Full Text PDF

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site.

View Article and Find Full Text PDF

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site.

View Article and Find Full Text PDF

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site.

View Article and Find Full Text PDF

A platform to accelerate optimization of proteolysis targeting chimeras (PROTACs) has been developed using a direct-to-biology (D2B) approach with a focus on linker effects. A large number of linker analogs-with varying length, polarity, and rigidity-were rapidly prepared and characterized in four cell-based assays by streamlining time-consuming steps in synthesis and purification. The expansive dataset informs on linker structure-activity relationships (SAR) for in-cell E3 ligase target engagement, degradation, permeability, and cell toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Ocean waves create sea spray aerosol (SSA) that carries organic matter from the ocean to the atmosphere, with unknown factors influencing this process.
  • Research using an isolated ocean-atmosphere system allows for direct observation of how different types of organic matter transfer from seawater to SSA during phytoplankton blooms.
  • Findings indicate that the composition of SSA changes over time in relation to the biological conditions in the ocean, highlighting variations in the transfer rates of different organic components.
View Article and Find Full Text PDF
Article Synopsis
  • Lipopolysaccharides (LPS) in sea spray aerosol (SSA) react differently with HNO based on the type of cations present, with divalent cations (Mg and Ca) showing less reactivity compared to monovalent cations (Na).
  • Experiments and molecular dynamics simulations indicate that divalent cations increase the rigidity and aggregation of LPS, altering the particle structure and reducing the diffusion of water, which ultimately leads to decreased reactivity with HNO.
  • This research highlights the significance of ocean-derived salts in influencing the complex chemical behaviors of aerosol particles in the atmosphere.
View Article and Find Full Text PDF

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases.

View Article and Find Full Text PDF

The topic of gender equality within the United States workforce is receiving a great deal of attention. The field of chemistry is no exception and is increasingly focused on taking steps to achieve gender diversity within the chemistry workforce. Over the past several years, many computational chemistry groups within large pharmaceutical companies have realized growth in the number of women, and here we discuss the key factors that we believe have played a role in attracting and retaining the authors of this review as computational chemists in pharma.

View Article and Find Full Text PDF

Point mutations in human isocitrate dehydrogenase 1 (IDH1) can drive malignancies, including lower-grade gliomas and secondary glioblastomas, chondrosarcomas, and acute myeloid leukemias. These mutations, which usually affect residue R132, ablate the normal activity of catalyzing the NADP-dependent oxidation of isocitrate to α-ketoglutarate (αKG) while also acquiring a neomorphic activity of reducing αKG to d-2-hydroxyglutarate (D2HG). Mutant IDH1 can be selectively therapeutically targeted due to structural differences that occur in the wild type (WT) versus mutant form of the enzyme, though the full mechanisms of this selectivity are still under investigation.

View Article and Find Full Text PDF

Custom-designed ligand-binding proteins represent a promising class of macromolecules with exciting applications toward the design of new enzymes or the engineering of antibodies and small-molecule recruited proteins for therapeutic interventions. However, several challenges remain in designing a protein sequence such that the binding site organization results in high affinity interaction with a bound ligand. Here, we study the dynamics of explicitly solvated designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the causes that lead to the low affinity or instability of most of these designs, despite the prediction of their success by the computational design methodology.

View Article and Find Full Text PDF

Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry.

View Article and Find Full Text PDF

The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC-AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.

View Article and Find Full Text PDF
Article Synopsis
  • Atmospheric aerosols, especially sea spray aerosol (SSA), significantly affect climate by influencing solar radiation and cloud formation, but their exact roles are not fully understood.
  • Recent findings reveal that SSA particles are complex, containing not only sea salt but also biological materials (like proteins and bacteria) and organic compounds (like fatty acids), indicating a richer composition than previously thought.
  • Future aerosol chemistry research will require a combination of experimental and computational methods to better understand the intricate nature of SSA, which will help predict how these particles influence climate systems.
View Article and Find Full Text PDF

The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states.

View Article and Find Full Text PDF

Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q).

View Article and Find Full Text PDF

Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro.

View Article and Find Full Text PDF

Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state.

View Article and Find Full Text PDF

Cullin-RING E3 ligases (CRLs) are elongated and bowed protein complexes that transfer ubiquitin over 60 Å to proteins targeted for proteasome degradation. One such CRL contains the ankyrin repeat and SOCS box protein 9 (ASB9), which binds to and partially inhibits creatine kinase (CK). While current models for the ASB9-CK complex contain some known interface residues, the overall structure and precise interface of the ASB9-CK complex remains unknown.

View Article and Find Full Text PDF

The ankyrin repeat and SOCS box (ASB) family is composed of 18 proteins and belongs to the suppressor of cytokine signaling (SOCS) box protein superfamily. The ASB proteins function as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that specifically transfer ubiquitin to cellular proteins targeting them for degradation by the proteasome. ASB9 binds to creatine kinase (CK) and targets it for degradation; however, the way in which ASB9 interacts with CK is not yet known.

View Article and Find Full Text PDF