Publications by authors named "Jamie R Schoenborn"

Circulating tumor cells and disseminated tumor cells (DTCs) are of great interest because they provide a minimally invasive window for assessing aspects of cancer biology, including tumor heterogeneity, a means to discover biomarkers of disease behavior, and a way to identify and prioritize therapeutic targets in the emerging era of precision oncology. However, the rarity of circulating tumor cells and DTCs poses a substantial challenge to the consistent success in analyzing their molecular features, including genomic aberrations. Herein, we describe optimized and robust methods to reproducibly detect genomic copy number alterations in samples of 2 to 40 cells after whole-genome amplification with the use of a high-resolution single-nuclear polymorphism-array platform and refined computational algorithms.

View Article and Find Full Text PDF

The remarkable variation in prostate cancer clinical behavior represents an opportunity to identify and understand molecular features that can be used to stratify patients into clinical subgroups for more precise outcome prediction and treatment selection. Significant progress has been made in recent years in establishing the composition of genomic and epigenetic alterations in localized and advanced prostate cancers using array-based technologies and next-generation sequencing approaches. The results of these efforts shed new light on our understanding of this disease and point to subclasses of prostate cancer that exhibit distinct vulnerabilities to therapeutics.

View Article and Find Full Text PDF

The Src family kinase Lck is crucial for the initiation of TCR signaling. The activity of Lck is tightly controlled to prevent erroneous immune activation, yet it enables rapid cellular responses over a range of sensitivities to antigens. Here, in experiments with an analog-sensitive variant of the tyrosine kinase Csk, we report that Lck in T cells is dynamically controlled by an equilibrium between Csk and the tyrosine phosphatase CD45.

View Article and Find Full Text PDF

Interferon-gamma (IFN-gamma) is crucial for immunity against intracellular pathogens and for tumor control. However, aberrant IFN-gamma expression has been associated with a number of autoinflammatory and autoimmune diseases. This cytokine is produced predominantly by natural killer (NK) and natural killer T (NKT) cells as part of the innate immune response, and by Th1 CD4 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops.

View Article and Find Full Text PDF

Unlike the well defined T helper type 2 cytokine locus, little is known about the regulatory elements that govern the expression of Ifng, which encodes the 'signature' T helper type 1 cytokine interferon-gamma. Here our evolutionary analysis showed that the mouse Ifng locus diverged from the ancestral locus as a result of structural rearrangements producing deletion of the neighboring gene encoding interleukin 26 and disrupting synteny 57 kilobases upstream of Ifng. Proximal to that disruption, we identified by high-resolution mapping many regions with CD4+ T cell subset-specific epigenetic modifications.

View Article and Find Full Text PDF