Studies of kappa opioid receptor signaling mechanisms during the last decade have demonstrated that agonist activation of the receptor results in Gβγ-dependent signaling and distinct arrestin-dependent signaling events. Gβγ-dependent signaling results in ion channel regulation causing neuronal inhibition, inhibition of transmitter release, and subsequent analgesic responses. In contrast, arrestin-dependent signaling events result in p38 MAPK activation and subsequent dysphoric and proaddictive behavioral responses.
View Article and Find Full Text PDFKOR activation of Gβγ dependent signaling results in analgesia, whereas the dysphoric effects of KOR agonists are mediated by a different pathway involving G protein receptor kinase and non-visual arrestin. Based on this distinction, a partial KOR agonist that does not efficiently activate arrestin-dependent biased signaling may produce analgesia without dysphoria. No KOR-selective partial agonists are currently available, and preclinical assessment is complicated by sequence differences between rodent (r) and human (h) KOR.
View Article and Find Full Text PDFPurpose: Pilocarpine induces prolonged status epilepticus (SE) in rodents that results in neurodegeneration and cognitive deficits, both commonly observed to be associated with human temporal lobe epilepsy. The multifunctional neuronal modulator, cyclooxygenase-2 (PTGS2 or COX-2), is rapidly induced after SE, mainly in principal neurons of the hippocampal formation and cortex. We used mice in which COX-2 is conditionally ablated in principal forebrain neurons to investigate the involvement of neuron-derived COX-2 in delayed mortality and performance in the Barnes maze.
View Article and Find Full Text PDF