Publications by authors named "Jamie N Sutherland"

In male goats, self-enurination (SE) is the downward turning of the head and shoulders while urinating onto the face and front legs. Although it provides important chemical cues to females, other males, and even self, it is a costly behavior that can create a range of problems including erythema, irritation, hair loss, and compromised skin. It was hypothesized that the extent of integument damage from SE on bucks' faces and front legs would be increased by housing bucks near females.

View Article and Find Full Text PDF

Pertussis toxin (PTx) is a major protective antigen produced by Bordetella pertussis that is included in all current acellular vaccines. Of several well-characterized monoclonal antibodies binding this toxin, the humanised hu1B7 and hu11E6 antibodies are highly protective in multiple in vitro and in vivo assays. In this study, we determine the molecular mechanisms of protection mediated by these antibodies.

View Article and Find Full Text PDF

We demonstrate an affordable low-noise surface plasmon resonance (SPR) instrument based on extraordinary optical transmission (EOT) in metallic nanohole arrays and quantify a broad range of antibody-ligand binding kinetics with equilibrium dissociation constants ranging from 200 pM to 40 nM. This nanohole-based SPR instrument is straightforward to construct, align, and operate, since it is built around a standard microscope and a portable fiber-optic spectrometer. The measured refractive index resolution of this platform is 3.

View Article and Find Full Text PDF

Despite more than 50 years of vaccination, disease caused by the bacterium Bordetella pertussis persists, with rates increasing in industrialized countries over the past decade. This rise may be attributed to several factors, including increased surveillance, emergence of vaccine escape variants, waning immunity in adults, and the introduction of acellular subunit vaccines, which include chemically detoxified pertussis toxin (PTd). Two potently protective epitopes on pertussis toxin (PTx) are recognized by the monoclonal antibodies 1B7 and 11E6, which inhibit catalytic and cell-binding activities, respectively.

View Article and Find Full Text PDF

Technologies based on surface plasmon resonance (SPR) have allowed rapid, label-free characterization of protein-protein and protein-small molecule interactions. SPR has become the gold standard in industrial and academic settings, in which the interaction between a pair of soluble binding partners is characterized in detail or a library of molecules is screened for binding against a single soluble protein. In spite of these successes, SPR is only beginning to be adapted to the needs of membrane-bound proteins which are difficult to study in situ but represent promising targets for drug and biomarker development.

View Article and Find Full Text PDF

Despite more than five decades of research and vaccination, infection by Bordetella pertussis remains a serious disease with no specific treatments or validated correlates of protective immunity. Of the numerous monoclonal antibodies binding pertussis toxin (PTx) that have been produced and characterized, murine IgG2a monoclonal antibody 1B7 is uniquely neutralizing in all in vitro assays and in vivo murine models of infection. 1B7 binds an epitope on the enzymatically active S1 subunit of PTx (PTx-S1) with some linear elements, but previous work with S1 scanning peptides, phage-displayed peptide libraries, and S1 truncation/deletion variants was unable to more precisely define the epitope.

View Article and Find Full Text PDF

The global market for monoclonal antibody therapeutics reached a total of $11.2 billion in 2004, with an impressive 42% growth rate over the previous five years and is expected to reach approximately $34 billion by 2010. Coupled with this growth are stream-lined product development, production scale-up and regulatory approval processes for the highly conserved antibody structure.

View Article and Find Full Text PDF