Publications by authors named "Jamie Massey"

We present a study on nanoscale skyrmionic spin textures in [Formula: see text], a rare-earth complex noncollinear ferromagnet. We confirm, using X-ray microscopy, that [Formula: see text] can host lattices of metastable skyrmion bubbles at room temperature in the absence of a magnetic field, after applying a suitable field cooling protocol. The skyrmion bubbles are robust against temperature changes from room temperature to 330 K.

View Article and Find Full Text PDF

An antiferromagnet emits spin currents when time-reversal symmetry is broken. This is typically achieved by applying an external magnetic field below and above the spin-flop transition or by optical pumping. In this work we apply optical pump-THz emission spectroscopy to study picosecond spin pumping from metallic FeRh as a function of temperature.

View Article and Find Full Text PDF

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction.

View Article and Find Full Text PDF

Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. The read-out operation of skyrmion-based spintronic devices will rely on the electrical detection of a single magnetic skyrmion within a nanostructure.

View Article and Find Full Text PDF

Equi-atomic FeRh is a very interesting material as it undergoes a magnetostructural transition from an antiferromagnetic (AF) to a ferromagnetic (FM) phase between 75-105 °C. Its ability to present phase co-existence separated by domain walls (DWs) above room temperature provides immense potential for exploitation of their DW motion in spintronic devices. To be able to effectively control the DWs associated with AF/FM coexistence in FeRh thin films we must fully understand the magnetostructural transition and thermomagnetic behaviour of DWs at a localised scale.

View Article and Find Full Text PDF