Publications by authors named "Jamie M Moore"

Malaria remains a global health burden causing significant morbidity, yet the mechanisms underlying disease outcomes and protection are poorly understood. Herein, we analyzed the peripheral blood of a unique cohort of Malawian children with severe malaria, and performed a comprehensive overview of blood leukocytes and inflammatory mediators present in these patients. We reveal robust immune cell activation, notably of CD14+ inflammatory monocytes, NK cells and plasmacytoid dendritic cells (pDCs) that is associated with very high inflammation.

View Article and Find Full Text PDF

An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations.

View Article and Find Full Text PDF

Little is known about the genetic basis of naturally occurring variation for sexually selected behavioral traits. Drosophila melanogaster, with its rich repertoire of courtship behavior and genomic and genetic resources, is an excellent model organism for addressing this question. We assayed a genetically diverse panel of lines with full genome sequences, the Drosophila Genetic Reference Panel, to assess the heritability of variation in courtship behavior and mating progression.

View Article and Find Full Text PDF

NO produced by inducible NO synthase (iNOS) contributes to ischemic brain injury, but the cell types expressing iNOS and mediating tissue damage have not been elucidated. To examine the relative contribution of iNOS in resident brain cells and peripheral leukocytes infiltrating the ischemic brain, we used bone marrow (BM) chimeric mice in which the middle cerebral artery was occluded and infarct volume was determined 3 d later. iNOS(-/-) mice engrafted with iNOS(+/+) BM exhibited larger infarcts (44 ± 2 mm(3); n = 13; mean ± SE) compared with autologous transplanted iNOS(-/-) mice (24 ± 3 mm(3); n = 10; p < 0.

View Article and Find Full Text PDF

A high-level quantum chemistry investigation has been carried out for the addition and abstraction reactions by the radicals (•)OH and (•)OOH to and from the model alkenes 3-methylpyrrole and benzene. These models were chosen to reflect the functionalities contained in the side chain of the amino acid tryptophan. The W1BD procedure was used to calculate benchmark barriers and reaction energies for the smaller model system of (•)OOH addition to ethylene.

View Article and Find Full Text PDF

Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH.

View Article and Find Full Text PDF

Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear.

View Article and Find Full Text PDF

Antibody drug conjugates enable the targeted delivery of potent chemotherapeutic agents directly to cancerous cells. They are made by the chemical conjugation of cytotoxins to monoclonal antibodies, which can be achieved by first reducing interchain disulfide bonds followed by conjugation of the resulting free thiols with drugs. This process yields a controlled, but heterogeneous, population of conjugated products that contains species with various numbers of drugs linked to different former interchain disulfide cysteine residues on the antibodies.

View Article and Find Full Text PDF

Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (k(D)), a component of the osmotic second virial coefficient (B(2)) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions.

View Article and Find Full Text PDF

Highly concentrated protein solutions are becoming increasingly commonplace within the biopharmaceutical industry as more products are developed that feature high doses of drug intended for subcutaneous administration. An as-yet undeveloped subclass of these products feature multiple proteins coformulated together in high-concentration protein mixtures. Previous work has illustrated that the viscosity of aqueous solutions of various proteins at high concentrations can be remarkably different across otherwise similar molecules.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a genome-wide association study focusing on HIV-1 controllers and progressors to understand genetic factors influencing chronic viral infections.
  • They discovered over 300 significant single-nucleotide polymorphisms (SNPs) specifically within the major histocompatibility complex (MHC), emphasizing its importance for infectious diseases.
  • Key findings indicate that specific amino acids in HLA proteins, especially HLA-B and HLA-C, significantly influence the interaction between HLA and viral peptides, affecting the control of HIV infection.
View Article and Find Full Text PDF

Investigating the phase behavior of sugars in ice and lyophilized solids is of significant interest in the pharmaceutical industry. In this study, Raman and near infrared (NIR) spectroscopy are used to characterize and quantitate trehalose crystallization using several chemometric models. The predictive behaviors of partial least squares (PLS), principal component analysis (PCA), and multiple linear regression (MLR) models are compared.

View Article and Find Full Text PDF

The thyroid hormone receptor (TR) directly regulates the transcription of thyroid hormone-responsive genes in response to changing levels of thyroid hormone. Mechanistically TR utilizes a complex set of binding interactions, with hormone, response elements, and coregulatory proteins, to provide specific local control of patterns of transcriptional response that are partially responsible for inducing the tissue-selective responses to the circulating hormone. One of the apparently dominant phenomena in the regulation of thyroid hormone responses is the protein interactions between TR and its coregulators.

View Article and Find Full Text PDF

Androgens drive sex differentiation, bone and muscle development, and promote growth of hormone-dependent cancers by binding the nuclear androgen receptor (AR), which recruits coactivators to responsive genes. Most nuclear receptors recruit steroid receptor coactivators (SRCs) to their ligand binding domain (LBD) using a leucine-rich motif (LXXLL). AR is believed to recruit unique coactivators to its LBD using an aromatic-rich motif (FXXLF) while recruiting SRCs to its N-terminal domain (NTD) through an alternate mechanism.

View Article and Find Full Text PDF

The thyroid hormone receptor regulates a diverse set of genes that control processes from embryonic development to adult homeostasis. Upon binding of thyroid hormone, the thyroid receptor releases corepressor proteins and undergoes a conformational change that allows for the interaction of coactivating proteins necessary for gene transcription. This interaction is mediated by a conserved motif, termed the NR box, found in many coregulators.

View Article and Find Full Text PDF

Haplotype-based methods offer a powerful approach to disease gene mapping, based on the association between causal mutations and the ancestral haplotypes on which they arose. As part of The SNP Consortium Allele Frequency Projects, we characterized haplotype patterns across 51 autosomal regions (spanning 13 megabases of the human genome) in samples from Africa, Europe, and Asia. We show that the human genome can be parsed objectively into haplotype blocks: sizable regions over which there is little evidence for historical recombination and within which only a few common haplotypes are observed.

View Article and Find Full Text PDF