Publications by authors named "Jamie M Iannacone"

Porous polymer monolithic (PPM) columns are employed to collect and concentrate neuronal release from invertebrate and vertebrate model systems, prior to their characterization with mass spectrometry. The monoliths are fabricated in fused-silica capillaries from lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EDMA). The binding capacities for fluorescein and for fluorescently labeled peptides are on the order of nanomoles per millimeter of length of monolith material for a capillary with an inner diameter of 200 microm.

View Article and Find Full Text PDF

The design and fabrication of a multilayered polymer micro-nanofluidic chip is described that consists of poly(methylmethacrylate) (PMMA) layers that contain microfluidic channels separated in the vertical direction by polycarbonate (PC) membranes that incorporate an array of nanometre diameter cylindrical pores. The materials are optically transparent to allow inspection of the fluids within the channels in the near UV and visible spectrum. The design architecture enables nanofluidic interconnections to be placed in the vertical direction between microfluidic channels.

View Article and Find Full Text PDF

An ESI emitter made of poly(dimethylsiloxane) interfaces on-chip sample preparation with MS detection. The unique multilayer design allows both the analyte and the spray solutions to reside on the device simultaneously in discrete microfluidic environments that are spatially separated by a polycarbonate track-etched, nanocapillary array membrane (NCAM). In direct spray mode, voltage is applied to the microchannel containing a spray solution delivered via a syringe pump.

View Article and Find Full Text PDF