Total phenolic chromatographic indices (TPCI) of three commercially grown saskatoon berry varieties and a pomace from commercial juice production were determined. Northline was shown to have the highest TPCI of 504.2 mg/100 g FW.
View Article and Find Full Text PDFThe ability to detect the undeclared addition of a juice of lesser economic value to one of higher value (juice-to-juice debasing) is a particular concern between apple and pear juices due to similarities in their major carbohydrate/polyol profiles. Fingerprint compounds for the detection of this type of adulteration were identified in both commercial apple and pear juices by HPLC-PDA, were isolated chromatographically, and structurally identified by LC-MS/MS. The apple juice fingerprint was identified as 4-O-p-coumarylquinic acid and two pear compounds as isorhamnetin-3-O-rutinoside and abscisic acid.
View Article and Find Full Text PDFChlorogenic acids are among the most abundant phenolics found in the human diet. Of these, the mono-caffeoylquinic acids are the predominant phenolics found in fruits, such as apples and pears, and products derived from them. In this research, a comprehensive study of the electrospray ionization (ESI) tandem mass spectrometric (MS/MS) dissociation behavior of the three most common mono-caffeoylquinic acids, namely 5-O-caffeoylquinic acid (5-CQA), 3-O-caffeoylquinic acid (3-CQA) and 4-O-caffeoylquinic acid (4-CQA), were determined using both positive and negative ionization.
View Article and Find Full Text PDFThe effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.
View Article and Find Full Text PDFJ Agric Food Chem
December 2014
Pear juice is predominately composed of carbohydrates/polyols (>95% of the total soluble solids), making it susceptible to adulteration by the addition of less expensive commercial sweeteners. In this research, the major carbohydrate and polyol (fructose, glucose, sucrose, and sorbitol) content of 32 pure pear juices representing five world producing regions and three years of production was determined. Additionally, methods employing oligosaccharide profiling to detect the debasing of these samples with four commercial sweeteners (HFCS 55 and 90, TIS, and HIS) were developed using capillary gas chromatography with flame ionization detection (CGC-FID) and high-performance liquid chromatography with pulsed amperometric detection (HPAE-PAD).
View Article and Find Full Text PDFNineteen pure agave syrups representing the three major production regions and four processing facilities in Mexico were analyzed for their major carbohydrate, polyol, and oligosaccharide profiles, as well as their physicochemical properties (pH, °Brix, total acidity, percent total titratable acidity, and color). Additionally, the detection of intentional debasing of agave syrup with four commercial nutritive sweeteners (HFCS 55 and 90, DE 42 and sucrose) was afforded by oligosaccharide profiling employing both high performance anion exchange liquid chromatography with pulsed amperometric detection (HPAE-PAD) and capillary gas chromatography with flame ionization detection (CGC-FID). Results showed that the major carbohydrate and polyol in agave syrups were fructose and inositol with mean concentrations of 84.
View Article and Find Full Text PDF