Publications by authors named "Jamie Jarusiewicz"

Despite significant advances over recent years, the treatment of T cell acute lymphoblastic leukemia (T-ALL) remains challenging. We have recently shown that a subset of T-ALL cases exhibited constitutive activation of the lymphocyte-specific protein tyrosine kinase (LCK) and were consequently responsive to treatments with LCK inhibitors and degraders such as dasatinib and dasatinib-based PROTACs. Here we report the design, synthesis and evaluation of SJ45566, a potent and orally bioavailable LCK PROTAC.

View Article and Find Full Text PDF

Thalidomide and its analogues are frequently used in PROTAC design. However, they are known to be inherently unstable, undergoing hydrolysis even in commonly utilized cell culture media. We recently reported that phenyl glutarimide (PG)-based PROTACs displayed improved chemical stability and, consequently, improved protein degradation efficacy and cellular potency.

View Article and Find Full Text PDF
Article Synopsis
  • Influenza remains a major cause of death globally, leading to efforts to develop antiviral strategies that have been met with resistance from the virus, including resistance to the new drug baloxavir marboxil.
  • Researchers have leveraged structural insights from endonuclease-substrate complexes to design new inhibitor molecules that specifically target the endonuclease, aiming to minimize the chances of resistance mutations.
  • The team successfully created potent inhibitors effective against both normal and resistant strains of the endonuclease, including macrocyclic versions, and also identified ways to enhance the effectiveness of these cyclic compounds based on structural analysis.
View Article and Find Full Text PDF
Article Synopsis
  • - T cell acute lymphoblastic leukemia (T-ALL) is a severe blood cancer that lacks effective targeted treatments for patients whose disease has come back after initial therapy, prompting research into new methods of treatment.
  • - Researchers have discovered that inhibiting a protein called LCK can be a critical strategy for targeting T-ALL; they developed a new compound, SJ11646, which is more effective than the existing drug dasatinib by significantly degrading LCK proteins and exhibiting stronger cytotoxicity against leukemia cells.
  • - In tests, SJ11646 demonstrated a much longer duration of LCK suppression in models of T-ALL compared to dasatinib, leading to increased survival rates, and may also have potential applications for targeting
View Article and Find Full Text PDF

Aberrant activation of the JAK-STAT signaling pathway has been implicated in the pathogenesis of a range of hematological malignancies and autoimmune disorders. Here we describe the design, synthesis, and characterization of JAK2/3 PROTACs utilizing a phenyl glutarimide (PG) ligand as the cereblon (CRBN) recruiter. SJ10542 displayed high selectivity over GSPT1 and other members of the JAK family and potency in patient-derived ALL cells containing both JAK2 fusions and CRLF2 rearrangements.

View Article and Find Full Text PDF

Targeting cereblon (CRBN) is currently one of the most frequently reported proteolysis-targeting chimera (PROTAC) approaches, owing to favorable drug-like properties of CRBN ligands, immunomodulatory imide drugs (IMiDs). However, IMiDs are known to be inherently unstable, readily undergoing hydrolysis in body fluids. Here we show that IMiDs and IMiD-based PROTACs rapidly hydrolyze in commonly utilized cell media, which significantly affects their cell efficacy.

View Article and Find Full Text PDF

CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs.

View Article and Find Full Text PDF

Whereas the PROTAC approach to target protein degradation greatly benefits from rational design, the discovery of small-molecule degraders relies mostly on phenotypic screening and retrospective target identification efforts. Here, we describe the design, synthesis, and screening of a large diverse library of thalidomide analogues against a panel of patient-derived leukemia and medulloblastoma cell lines. These efforts led to the discovery of potent and novel GSPT1/2 degraders displaying selectivity over classical IMiD neosubstrates, such as IKZF1/3, and high oral bioavailability in mice.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) strains that are resistant to all forms of penicillin have become an increasingly common and urgent problem threatening human health. They are responsible for a wide variety of infectious diseases ranging from minor skin abscesses to life-threatening severe infections. The operon that is conserved among strains encodes a three-component signal transduction system () that is responsible for sensing and responding to cell wall stress.

View Article and Find Full Text PDF

Profiling of the kinase-binding capabilities of an aminopyrimidine analogue detected in a cellular screen of the St. Jude small-molecule collection led to the identification of a novel series of FMS-like tyrosine kinase 3 (FLT3) inhibitors. Structure-activity relationship studies led to the development of compounds exhibiting good potency against MV4-11 and MOLM13 acute myelogenous leukemia cells driven by FLT3, regardless of their FLT3 mutation status.

View Article and Find Full Text PDF

Enzymes that modify the epigenetic status of cells provide attractive targets for therapy in various diseases. The therapeutic development of epigenetic modulators, however, has been largely limited to direct targeting of catalytic active site conserved across multiple members of an enzyme family, which complicates mechanistic studies and drug development. Class IIa histone deacetylases (HDACs) are a group of epigenetic enzymes that depends on interaction with Myocyte Enhancer Factor-2 (MEF2) for their recruitment to specific genomic loci.

View Article and Find Full Text PDF

A simple and efficient one-pot, three-component method has been developed for the synthesis of alpha-aminonitriles. This Strecker reaction is applicable for aldehydes and ketones with aliphatic or aromatic amines and trimethylsilyl cyanide in the presence of a palladium Lewis acid catalyst in dichloromethane solvent at room temperature.

View Article and Find Full Text PDF

Thin layer chromatography was used to analyze the glucose and maltose concentrations of the digestive gland-gonad complex (DGG) of uninfected-estivated Biomphalaria glabrata snails and estivated B. glabrata patently infected with Schistosoma mansoni. All snails were estivated in a most chamber at a relative humidity of 98+/-1% and a temperature of 23+/-1 degrees C for 14 days.

View Article and Find Full Text PDF

High performance thin layer chromatography was used to quantify the concentrations of beta-carotene and lutein in the whole bodies and digestive gland-gonad complexes of Pomacea bridgesii fed on a lettuce diet and a hen's egg yolk diet, and snails starved for one week. beta-carotene and lutein concentrations were determined in the fecal matter of cultures on the lettuce and yolk diets as well. Significantly higher amounts of beta-carotene were found in the whole bodies of snails fed lettuce compared with those starved for a week.

View Article and Find Full Text PDF