Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment.
View Article and Find Full Text PDFPediatric solid and central nervous system tumors are the leading cause of cancer-related death among children. Identifying new targeted therapies necessitates the use of pediatric cancer models that faithfully recapitulate the patient's disease. However, the generation and characterization of pediatric cancer models has significantly lagged behind adult cancers, underscoring the urgent need to develop pediatric-focused cell line resources.
View Article and Find Full Text PDFGene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network.
View Article and Find Full Text PDFThe mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells.
View Article and Find Full Text PDFA liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantification of vincristine and tariquidar in 10 μL of mouse whole blood using volumetric absorptive microsampling devices. Samples were extracted from the devices and quantified against calibrators prepared in a human blood plasma matrix. Separation of vincristine and tariquidar was achieved using a Shimpack XR ODS III C18 stationary phase and H O and methanol mobile phase solvents containing 0.
View Article and Find Full Text PDFMRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death.
View Article and Find Full Text PDFResistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies.
View Article and Find Full Text PDFBiomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found.
View Article and Find Full Text PDFExpert Opin Drug Discov
February 2022
Introduction: Neuroblastoma is a cancer of the sympathetic nervous system that causes up to 15% of cancer-related deaths among children. Among the ~1,000 newly diagnosed cases per year in Europe, more than half are classified as high-risk, with a 5-year survival rate <50%. Current multimodal treatments have improved survival among these patients, but relapsed and refractory tumors remain a major therapeutic challenge.
View Article and Find Full Text PDFBackground: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA.
View Article and Find Full Text PDFJ Adolesc Young Adult Oncol
April 2022
Involvement of adolescent and young adult (AYAs) cancer survivors as consumers in research is increasingly encouraged, yet few studies have identified the feasibility and acceptability of methods used to involve them. We aimed to identify: (1) How feasible and acceptable is a consumer-driven, workshop-based research priority-setting approach? And (2) what research priorities do Australian AYA consumers endorse? AYA cancer survivors diagnosed 15-30 years old and currently younger than 35 years were invited to participate. The AYAs completed a pre-workshop survey to rank their top three priorities from the United Kingdom-based James Lind Alliance list, participated in a 90-minute focus group, and completed a post-workshop evaluation survey.
View Article and Find Full Text PDFPurpose: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma.
Experimental Design: The effects of the drug combination on cancer growth were examined and in animal models of -amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction.
Targeting cell division by chemotherapy is a highly effective strategy to treat a wide range of cancers. However, there are limitations of many standard-of-care chemotherapies: undesirable drug toxicity, side-effects, resistance and high cost. New small molecules which kill a wide range of cancer subtypes, with good therapeutic window in vivo, have the potential to complement the current arsenal of anti-cancer agents and deliver improved safety profiles for cancer patients.
View Article and Find Full Text PDFPurpose: gene rearrangement with transcriptional superenhancers leads to overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with -rearranged neuroblastoma.
Experimental Design: Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library.
Background: Epithelioid inflammatory myofibroblastic sarcoma (eIMS) is characterised by perinuclear ALK localisation, CD30 expression and early relapse despite crizotinib treatment. We aimed to identify therapies to prevent and/or treat ALK inhibitor resistance.
Methods: Malignant ascites, from an eIMS patient at diagnosis and following multiple relapses, were used to generate matched diagnosis and relapse xenografts.
The ability of the N-MYC transcription factor to drive cancer progression is well demonstrated in neuroblastoma, the most common extracranial pediatric solid tumor, where amplification heralds a poor prognosis, with only 11% of high-risk patients surviving past 5 years. However, decades of attempts of direct inhibition of N-MYC or its paralogues has led to the conclusion that this protein is "undruggable." Therefore, targeting pathways upregulated by N-MYC signaling presents an alternative therapeutic approach.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
February 2020
-amplified neuroblastoma is one of the deadliest forms of childhood cancer and remains a significant clinical challenge. Direct pharmacological inhibition of MYCN is not currently achievable. One strategy could be to target the AKT/GSK3β pathway, which directly regulates the stability of the MYCN protein.
View Article and Find Full Text PDFAmplification of the MYCN oncogene occurs in ~25% of primary neuroblastomas and is the single most powerful biological marker of poor prognosis in this disease. MYCN transcriptionally regulates a range of biological processes important for cancer, including cell metabolism. The MYCN-regulated metabolic gene SLC16A1, encoding the lactate transporter monocarboxylate transporter 1 (MCT1), is a potential therapeutic target.
View Article and Find Full Text PDFPatients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein overexpression have very poor prognosis. The cyclin-dependent kinase 7 (CDK7)/super-enhancer inhibitor THZ1 suppresses MYCN gene transcription, reduces neuroblastoma cell proliferation, but does not cause significant cell death. The protein kinase phosphatase 1 nuclear targeting subunit (PNUTS) has recently been shown to interact with c-Myc protein and suppresses c-Myc protein degradation.
View Article and Find Full Text PDFInformative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease.
View Article and Find Full Text PDFBackground: Predictive preclinical models play an important role in the assessment of new treatment strategies and as avatar models for personalised medicine; however, reliable and timely model generation is challenging. We investigated the feasibility of establishing patient-derived xenograft (PDX) models of high-risk neuroblastoma from a range of tumour-bearing patient materials and assessed approaches to improve engraftment efficiency.
Methods: PDX model development was attempted in NSG mice by using tumour materials from 12 patients, including primary and metastatic solid tumour samples, bone marrow, pleural fluid and residual cells from cytogenetic analysis.