Int J Neuropsychopharmacol
October 2014
Background: Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology.
Methods: Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans.
Neuropharmacology
February 2014
Kappa opioid receptors and their endogenous neuropeptide ligand, dynorphin A, are densely localized in limbic and cortical areas comprising the brain reward system, and appear to play a key role in modulating stress and mood. Growing literature indicates that kappa receptor antagonists may be beneficial in the treatment of mood and addictive disorders. However, existing literature on kappa receptor antagonists has used extensively JDTic and nor-BNI which exhibit long-lasting pharmacokinetic properties that complicate experimental design and interpretation of results.
View Article and Find Full Text PDFGeneral opioid receptor antagonists reduce food intake and body weight in rodents, but the contributions of specific receptor subtypes are unknown. We examined whether genetic deletion of the kappa-opioid receptor (KOR) in mice alters metabolic physiology. KOR-knockout (KO) and wild-type (WT) mice were fed a high-energy diet (HED) for 16 wk.
View Article and Find Full Text PDFA series of 6-bicycloaryloxynicotinamides were identified as opioid receptor antagonists at mu, kappa, and delta receptors. Compounds in the 6-(2,3,4,5-tetrahydro-1H-benzo[c]azepin-7-yloxy)nicotinamide scaffold exhibited potent in vitro functional antagonism at all three receptors.
View Article and Find Full Text PDFLY255582 is a pan opioid selective receptor antagonist that has been shown to have high affinity for mu, delta, and kappa receptors in vitro. In order to better understand the in vivo opioid receptor selectivity of LY255582, we developed in vivo receptor occupancy assays in the rat for the opioid mu, kappa and delta receptors using the occupancy tracers naltrexone, GR103545 and naltriben respectively. Individual assays for each target were established and then a "triple tracer" assay was created where all three tracers were injected simultaneously, taking advantage of LC/MS/MS technology to selectively monitor brain tracer levels.
View Article and Find Full Text PDFA structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes.
View Article and Find Full Text PDFDifferences in the anorectic activity of morphinan (e.g., naltrexone) and 3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4PP) opioid receptor antagonists have been described.
View Article and Find Full Text PDF