Activation of T cells requires a rapid surge in cellular protein synthesis. However, the role of translation initiation in the early induction of specific genes remains unclear. Here, we show human translation initiation factor eIF3 interacts with select immune system related mRNAs including those encoding the T cell receptor (TCR) subunits TCRA and TCRB.
View Article and Find Full Text PDFNonstructural protein 1 (nsp1) is a coronavirus (CoV) virulence factor that restricts cellular gene expression by inhibiting translation through blocking the mRNA entry channel of the 40S ribosomal subunit and by promoting mRNA degradation. We perform a detailed structure-guided mutational analysis of severe acute respiratory syndrome (SARS)-CoV-2 nsp1, revealing insights into how it coordinates these activities against host but not viral mRNA. We find that residues in the N-terminal and central regions of nsp1 not involved in docking into the 40S mRNA entry channel nonetheless stabilize its association with the ribosome and mRNA, both enhancing its restriction of host gene expression and enabling mRNA containing the SARS-CoV-2 leader sequence to escape translational repression.
View Article and Find Full Text PDFUsing cryo-electron microscopy (cryo-EM), we determined the structure of the 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications.
View Article and Find Full Text PDFA central problem in human biology remains the discovery of causal molecular links between mutations identified in genome-wide association studies (GWAS) and their corresponding disease traits. This challenge is magnified for variants residing in non-coding regions of the genome. Single-nucleotide polymorphisms (SNPs) in the 5' untranslated region (5'-UTR) of the ferritin light chain () gene that cause hyperferritinemia are reported to disrupt translation repression by altering iron regulatory protein (IRP) interactions with the mRNA 5'-UTR.
View Article and Find Full Text PDFCurr Opin Chem Biol
December 2017
Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools.
View Article and Find Full Text PDFProprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing.
View Article and Find Full Text PDFTranslation in eukaryotes is highly regulated during initiation, a process impacted by numerous readouts of a cell's state. There are many cases in which cellular messenger RNAs likely do not follow the canonical 'scanning' mechanism of translation initiation, but the molecular mechanisms underlying these pathways are still being uncovered. Some RNA viruses such as the hepatitis C virus use highly structured RNA elements termed internal ribosome entry sites (IRESs) that commandeer eukaryotic translation initiation, by using specific interactions with the general eukaryotic translation initiation factor eIF3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Accurate protein folding is essential for proper cellular and organismal function. In the cell, protein folding is carefully regulated; changes in folding homeostasis (proteostasis) can disrupt many cellular processes and have been implicated in various neurodegenerative diseases and other pathologies. For many proteins, the initial folding process begins during translation while the protein is still tethered to the ribosome; however, most biophysical studies of a protein's energy landscape are carried out in isolation under idealized, dilute conditions and may not accurately report on the energy landscape in vivo.
View Article and Find Full Text PDFUnlabelled: When expressed in Saccharomyces cerevisiae using either of two constitutive yeast promoters (PGK1 and CCW12), the transporters CDT-1 and CDT-2 from the filamentous fungus Neurospora crassa are able to catalyze, respectively, active transport and facilitated diffusion of cellobiose (and, for CDT-2, also xylan and its derivatives). In S. cerevisiae, endogenous permeases are removed from the plasma membrane by clathrin-mediated endocytosis and are marked for internalization through ubiquitinylation catalyzed by Rsp5, a HECT class ubiquitin:protein ligase (E3).
View Article and Find Full Text PDFCellobiose phosphorylase (CBP) cleaves cellobiose-abundant in plant biomass-to glucose and glucose 1-phosphate. However, the pentose sugar xylose, also abundant in plant biomass, acts as a mixed-inhibitor and a substrate for the reverse reaction, limiting the industrial potential of CBP. Preventing xylose, which lacks only a single hydroxymethyl group relative to glucose, from binding to the CBP active site poses a spatial challenge for protein engineering, since simple steric occlusion cannot be used to block xylose binding without also preventing glucose binding.
View Article and Find Full Text PDFBacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase).
View Article and Find Full Text PDFEukaryotic mRNAs contain a 5′ cap structure that is crucial for recruitment of the translation machinery and initiation of protein synthesis. mRNA recognition is thought to require direct interactions between eukaryotic initiation factor 4E (eIF4E) and the mRNA cap. However, translation of numerous capped mRNAs remains robust during cellular stress, early development, and cell cycle progression despite inactivation of eIF4E.
View Article and Find Full Text PDFMutations conferring resistance to translation inhibitors often alter the structure of rRNA. Reduced susceptibility to distinct structural antibiotic classes may, therefore, emerge when a common ribosomal binding site is perturbed, which significantly reduces the clinical utility of these agents. The translation inhibitors negamycin and tetracycline interfere with tRNA binding to the aminoacyl-tRNA site on the small 30S ribosomal subunit.
View Article and Find Full Text PDFThe efficient use of hemicellulose in the plant cell wall is critical for the economic conversion of plant biomass to renewable fuels and chemicals. Previously, the yeast Saccharomyces cerevisiae has been engineered to convert the hemicellulose-derived pentose sugars xylose and arabinose to d-xylulose-5-phosphate for conversion via the pentose phosphate pathway (PPP). However, efficient pentose utilization requires PPP optimization and may interfere with its roles in NADPH and pentose production.
View Article and Find Full Text PDFThis protocol describes a method for CRISPR-Cas9-mediated genome editing that results in scarless and marker-free integrations of DNA into Saccharomyces cerevisiae genomes. DNA integration results from cotransforming (1) a single plasmid (pCAS) that coexpresses the Cas9 endonuclease and a uniquely engineered single guide RNA (sgRNA) expression cassette and (2) a linear DNA molecule that is used to repair the chromosomal DNA damage by homology-directed repair. For target specificity, the pCAS plasmid requires only a single cloning modification: replacing the 20-bp guide RNA sequence within the sgRNA cassette.
View Article and Find Full Text PDFEukaryotic initiation factor 3 (eIF3), an essential multi-protein complex involved in translation initiation, is composed of 12 tightly associated subunits in humans. While the overall structure of eIF3 is known, the mechanism of its assembly and structural consequences of dysregulation of eIF3 subunit expression seen in many cancers is largely unknown. Here we show that subunits in eIF3 assemble into eIF3 in an interdependent manner.
View Article and Find Full Text PDFThe production of bioenergy from plant biomass previously relied on using microorganisms that rapidly and efficiently convert simple sugars into fuels and chemicals. However, to exploit the far more abundant carbon fixed in plant cell walls, future industrial production hosts will need to be engineered to leverage the most efficient biochemical pathways and most robust traits that can be found in nature. The CRISPR-Cas9 genome editing technology now enables writing the genome at will, which will allow biotechnology to become an 'information science.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2016
Economical biofuel production from plant biomass requires the conversion of both cellulose and hemicellulose in the plant cell wall. The best industrial fermentation organism, the yeast has been developed to utilize xylose by heterologously expressing either a xylose reductase/xylitol dehydrogenase (XR/XDH) pathway or a xylose isomerase (XI) pathway. Although it has been proposed that the optimal means for fermenting xylose into biofuels would use XI instead of the XR/XDH pathway, no clear comparison of the best publicly-available yeast strains engineered to use XR/XDH or XI has been published.
View Article and Find Full Text PDFPoor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated.
View Article and Find Full Text PDFDynamic remodelling of intersubunit bridge B2, a conserved RNA domain of the bacterial ribosome connecting helices 44 (h44) and 69 (H69) of the small and large subunit, respectively, impacts translation by controlling intersubunit rotation. Here we show that aminoglycosides chemically related to neomycin-paromomycin, ribostamycin and neamine-each bind to sites within h44 and H69 to perturb bridge B2 and affect subunit rotation. Neomycin and paromomycin, which only differ by their ring-I 6'-polar group, drive subunit rotation in opposite directions.
View Article and Find Full Text PDFRegulation of protein synthesis is fundamental for all aspects of eukaryotic biology by controlling development, homeostasis and stress responses. The 13-subunit, 800-kilodalton eukaryotic initiation factor 3 (eIF3) organizes initiation factor and ribosome interactions required for productive translation. However, current understanding of eIF3 function does not explain genetic evidence correlating eIF3 deregulation with tissue-specific cancers and developmental defects.
View Article and Find Full Text PDFProtein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation have remained poorly understood. Moreover, the functions of modifications to ribosomal RNA and ribosomal proteins have also been unclear. Here we present the structure of the Escherichia coli 70S ribosome at 2.
View Article and Find Full Text PDFSustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates.
View Article and Find Full Text PDF