Introduction: The aims of this study were to determine (1) whether endothelial nitric oxide synthase (eNOS) inhibition stimulates endothelial microvesicles (EMVs) release and (2) the effect of EMVs derived from eNOS-inhibited cells on endothelial cell eNOS, inflammation, apoptosis, and tissue-type plasminogen activator (t-PA).
Methods: Human umbilical vein endothelial cells (HUVECs) were treated with the eNOS inhibitor (NG-nitro-
Unlabelled: Introduction/ Objective: Estrogen plays a protective role in vascular health due, in part, to its regulation of endothelial inflammation. However, the mechanism(s) by which estrogen negatively regulates inflammatory signaling pathways is not completely understood. MicroRNAs (miRNAs) are recognized as sensitive and selective regulators of cardiovascular function, inflammation, and disease, yet the effects of 17β-estradiol on the endothelial miRNA profile are largely unknown.
View Article and Find Full Text PDFCirculating endothelial cell-derived microvesicles (EMVs) have been shown to be elevated with obesity and associated with endothelial dysfunction; however, their direct effect on endothelial cells is unknown. The experimental aim of this study was to determine the effect of EMVs isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were identified, enumerated, and isolated from plasma by flow cytometry from 24 sedentary adults: 12 normal-weight adults [8 M/4 F; age: 55 ± 6 yr; body mass index (BMI): 24.
View Article and Find Full Text PDFPassive hyperthermia causes cerebral hypoperfusion primarily from heat-induced respiratory alkalosis. However, despite the cerebral hypoperfusion, it is possible that the mild alkalosis might help to attenuate cerebral inflammation. In this study, the cerebral exchange of extracellular vesicles (microvesicles), which are known to elicit pro-inflammatory responses when released in conditions of stress, were examined in hyperthermia with and without respiratory alkalosis.
View Article and Find Full Text PDFThe aim of this study was to determine the effects of endothelin-1 (ET-1)-generated endothelial microvesicles (EMVs) on endothelial cell inflammation, apoptosis, and endothelial nitric oxide synthase (eNOS). Human umbilical vein endothelial cells (HUVECs) were treated with ET-1 for 24 h. EMVs released into the supernatant from cells treated with ET-1 or vehicle were isolated and quantified.
View Article and Find Full Text PDFThe purpose of this study was to determine (1) if circulating endothelial microvesicles (EMVs) are elevated in hypertensive adults and (2) whether circulating EMVs are associated with hypertension-related endothelial vasodilator dysfunction. Circulating EMVs (CD31/42b) were determined in 30 middle-aged adults (55 ± 1 years): 15 normotensive (10 males, 5 females; blood pressure 114/71 ± 2/1 mm Hg) and 15 hypertensive (10 males, 5 females; blood pressure 142/87 ± 2/2 mm Hg). Forearm blood flow (FBF) (via plethysmography) was assessed by intra-arterial infusion of acetylcholine and sodium nitroprusside.
View Article and Find Full Text PDFPeople with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression.
View Article and Find Full Text PDFThe experimental aim of this study was to determine, in vitro, the effects of glucose-induced EMPs on endothelial cell expression of E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 and platelet cell adhesion molecule-1 (PECAM-1). Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 × 10 cells/condition.
View Article and Find Full Text PDFThe aims of this study were twofold. The first was to determine if human immunodeficiency virus (HIV)-1 glycoprotein (gp) 120 and transactivator of transcription (Tat) stimulate the release of endothelial microvesicles (EMVs). The second was to determine whether viral protein-induced EMVs are deleterious to endothelial cell function (inducing endothelial cell inflammation, oxidative stress, senescence and increasing apoptotic susceptibility).
View Article and Find Full Text PDFBackground Circulating microparticles have emerged as biomarkers and effectors of vascular disease. Elevated rates of cardiovascular disease are seen in HIV -1-seropositive individuals. The aims of this study were to determine: (1) if circulating microparticles are elevated in antiretroviral therapy-treated HIV -1-seropositive adults; and (2) the effects of microparticles isolated from antiretroviral therapy -treated HIV -1-seropositive adults on endothelial cell function, in vitro.
View Article and Find Full Text PDFBone marrow-derived early outgrowth cells play an important role in endothelial repair. In vitro isolation techniques have identified two distinct morphological early outgrowth cell populations, but it is still unknown whether they present some functional phenotypic differences. Accordingly, the aim of the present study was to determine whether there are phenotypic differences in cellular function between two putative early outgrowth cells in culture.
View Article and Find Full Text PDFmicroRNAs (miRNAs) have a key role in regulating inflammation, vascular health and in turn, cardiovascular disease. Specifically, altered circulating expression of miR-17, miR-21, miR-34a, miR-92a, miR-126, miR-145, miR-146a, and miR-150 has been linked with the pathogenesis and progression of cardiovascular disease. The aim of this study was to determine whether the circulating profile of these vascular-related miRNAs is disrupted with hypertension.
View Article and Find Full Text PDFBackground: Increased cardiovascular disease risk and prevalence associated with overweight and obesity is due, in part, to heightened inflammatory burden. The mechanisms underlying adiposity-related amplification of inflammation are not fully understood. Alterations in regulators of inflammatory processes such as microRNAs (miRs), however, are thought to play a pivotal role.
View Article and Find Full Text PDFThe experimental aim of this study was to determine the effects of high glucose-induced endothelial microparticles (EMPs) on endothelial cell susceptibility to apoptosis. Human umbilical vein endothelial cells (HUVECs) were cultured (3rd passage) and plated in 6-well plates at a density of 5.0 × 10 cells/condition.
View Article and Find Full Text PDFWhat is the central question of this study? Are there sex-related differences in the number of circulating endothelial microparticles (EMPs) and microparticle microRNA expression in middle-aged adult humans? What is the main finding and its importance? Although the numbers of circulating endothelial microparticles do not differ between middle-aged men and women, there are sex-related differences in the expression of miR-125a in activation-derived EMPs and miR-34a in apoptosis-derived EMPs. Differences in circulating endothelial microparticle microRNA content may provide new insight into the sex-related disparity in the risk and prevalence of vascular disease in middle-aged adults. The aims of this study were to determine: (i) whether circulating concentrations of endothelial microparticles (EMPs) differ in middle-aged men compared with women; and (ii) whether there are sex-related differences in microRNA expression in EMPs.
View Article and Find Full Text PDFWhat is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health.
View Article and Find Full Text PDFChildren with heart failure are treated with similar medical therapy as adults with heart failure. In contrast to adults with heart failure, these treatment regiments are not associated with improved outcomes in children. Recent studies have demonstrated age-related pathophysiological differences in the molecular mechanisms of heart failure between children and adults.
View Article and Find Full Text PDF