Spinal serotonergic pathways provide inhibitory and excitatory modulation of sensory, autonomic, and motor processing. After spinal cord injury (SCI), the acute inflammatory response is one process that damages descending pathways. Increases in serotonergic fiber density in spinal segments rostral and decreases caudal to the lesion have been observed previously and may contribute to neuropathic pain and motor dysfunction associated with SCI.
View Article and Find Full Text PDFChronic tactile allodynia and hyperalgesia are frequent complications of spinal cord injury (SCI) with poorly understood mechanisms. Possible causes are plastic changes in the central arbors of nociceptive and nonnociceptive primary sensory neurons and changes in descending modulatory serotonergic pathways. A clinically relevant clip-compression model of SCI in the rat was used to investigate putative mechanisms of chronic pain.
View Article and Find Full Text PDF