Components involved in the activation of the MAPK cascades in filamentous fungi are not well known. Here, we provide evidence that IDC1, a pezizomycotina-specific gene is involved along with the PaNox1 NADPH oxidase in the nuclear localization of the PaMpk1 MAP kinase, a prerequisite for MAPK activity. Mutants of IDC1 display the same phenotypes as mutants in PaNox1 and PaMpk1, i.
View Article and Find Full Text PDFSenescence of Podospora anserina is triggered by a cytoplasmic and infectious factor (the determinant of senescence) and is always correlated with mitochondrial DNA modifications, especially with the accumulation of small circular subgenomic DNA molecules, the senDNAs. Several observations have suggested that the senDNAs could be the cytoplasmic and infectious determinant. However, we show here (1) that senDNA molecules can be transferred to a young culture without the cotransmission of the determinant of senescence and (2) that the determinant of senescence does not segregate as a mitochondrial DNA mutation.
View Article and Find Full Text PDFTom70 and Mdm10 are mitochondrial outer membrane proteins. Tom70 is implicated in the import of proteins from the cytosol into the mitochondria in Saccharomyces cerevisiae and Neurospora crassa. Mdm10 is involved in the morphology and distribution of mitochondria in S.
View Article and Find Full Text PDFThe unavoidable arrest of vegetative growth in Podospora anserina (senescence process) is always correlated with rearrangements of the mitochondrial chromosome, mainly consisting in the amplification of particular regions as tandemly repeated circular molecules (senDNAs). One sequence systematically amplified in senescent cultures corresponds precisely to the first intron (intron alpha) of the cox1 gene; nevertheless, other regions (called beta and gamma) are also frequently amplified. The experiments presented in this paper show that cellular death is in some cases associated with the sole presence of large amounts of senDNA beta.
View Article and Find Full Text PDFThe unavoidable senescence process that limits the vegetative growth of Podospora anserina is always associated with an accumulation of various classes of circular, tandemly arranged, defective mitochondrial DNA molecules (senDNAs). The monomers of the senDNAs belonging to the so-called beta class share a common core, but differ in both their length and termini. To understand the mechanism leading to their formation, we have determined the junction sequence of 36 senDNA beta monomers present in various senescent cultures.
View Article and Find Full Text PDFIn Podospora anserina the phenomenon of senescence was previously shown to be correlated with the presence of senescence-specific circular DNAs (senDNAs), resulting from the amplification of distinct regions (alpha, beta, gamma and epsilon) of the mitochondrial chromosome. The beta region gives rise to senDNAs with variable sizes, but sharing a 1-kb common sequence. Here, we present a molecular analysis of five beta senDNAs.
View Article and Find Full Text PDFBy DNA sequencing and hybridization experiments we have localized the genes cob and col on the mitochondrial chromosome of Podospora anserina. The positions we have determined for these two genes are different from those previously attributed to them. The presence in the gene col of at least two introns, belonging respectively to class I and II, has been demonstrated.
View Article and Find Full Text PDFSenescence in Podospora anserina has long been shown to be under cytoplasmic control. Comparison of DNAs isolated from young and senescent cultures made it possible to detect the presence, in senescent cultures only, of a specific DNA (SEN-DNA). This DNA consists of repeated sequences arranged in a multimeric set of circular molecules.
View Article and Find Full Text PDFA small fraction (about 0.5%) of the transformants for a particular marker of B. subtilis (ilvA4; most probably a deletion) were found to be relatively unstable merodiploids.
View Article and Find Full Text PDF