Publications by authors named "Jameson P Davis"

Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood.

View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines elicit humoral responses in children that are comparable to those in adults. However, early-life T cell responses are distinct from adult ones, and questions remain about the nature and kinetics of mRNA vaccine-induced T cell responses in children. We report that Pfizer BNT162b2 mRNA vaccination elicits a significant antigen-specific CD4 T cell response in the ≥12-year-old cohort.

View Article and Find Full Text PDF

Background: Although most children experience mild symptoms during acute SARS-CoV-2 infection, some develop the severe post-COVID-19 complication, Multisystem Inflammatory Syndrome in Children (MIS-C). While acute presentations of COVID-19 and MIS-C have been well immunophenotyped, little is known about the lasting immune profile in children after acute illness.

Methods: Children 2 months-20 years of age presenting with either acute COVID-19 (n = 9) or MIS-C (n = 12) were enrolled in a Pediatric COVID-19 Biorepository at a single medical center.

View Article and Find Full Text PDF

Background: Cases of adolescents and young adults developing myocarditis after vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-targeted mRNA vaccines have been reported globally, but the underlying immunoprofiles of these individuals have not been described in detail.

Methods: From January 2021 through February 2022, we prospectively collected blood from 16 patients who were hospitalized at Massachusetts General for Children or Boston Children's Hospital for myocarditis, presenting with chest pain with elevated cardiac troponin T after SARS-CoV-2 vaccination. We performed extensive antibody profiling, including tests for SARS-CoV-2-specific humoral responses and assessment for autoantibodies or antibodies against the human-relevant virome, SARS-CoV-2-specific T-cell analysis, and cytokine and SARS-CoV-2 antigen profiling.

View Article and Find Full Text PDF

Multisystem inflammatory syndrome in children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory illness characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigenemia, cytokine storm, and immune dysregulation. In severe COVID-19, neutrophil activation is central to hyperinflammatory complications, yet the role of neutrophils in MIS-C is undefined. Here, we collect blood from 152 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 78 pediatric controls.

View Article and Find Full Text PDF

Currently available mRNA vaccines are extremely safe and effective to prevent severe SARS-CoV-2 infections. However, the emergence of variants of concerns (VOCs) has highlighted the importance of high population-based vaccine rates to effectively suppress viral transmission and breakthrough infections. While initially left out from vaccine efforts, children have become one of the most affected age groups and are key targets to stop community and household spread.

View Article and Find Full Text PDF

The goal of this study was to investigate the relationship between anti-SARS-CoV-2-Spike IgG titers passively transferred to the fetus from maternal vaccination during pregnancy and timing of infant SARS-CoV-2 infection. Pregnant, vaccinated individuals (n = 105) and their infants (n = 107) were enrolled in a prospective cohort study from July 2021 to June 2022, linking infant anti-Spike IgG titer at birth to risk of SARS-CoV-2 infection in the first fifteen months of life. Cord blood sera were collected at delivery and infant sera were collected at two and six months of age.

View Article and Find Full Text PDF

Although children have been largely spared from coronavirus disease 2019 (COVID-19), the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with increased transmissibility, combined with fluctuating mask mandates and school reopenings, has led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remain unclear.

View Article and Find Full Text PDF

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 D614G ("wild type") and Omicron antigens.

View Article and Find Full Text PDF

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 wild type and Omicron antigens.

View Article and Find Full Text PDF

While children have been largely spared from COVID-19 disease, the emergence of viral variants of concern (VOC) with increased transmissibility, combined with fluctuating mask mandates and school re-openings have led to increased infections and disease among children. Thus, there is an urgent need to roll out COVID-19 vaccines to children of all ages. However, whether children respond equivalently to adults to mRNA vaccines and whether dosing will elicit optimal immunity remains unclear.

View Article and Find Full Text PDF

Unlabelled: Multisystem Inflammatory Syndrome in Children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory systemic illness characterized by SARS-CoV-2 antigenemia, cytokine storm and immune dysregulation; however, the role of the neutrophil has yet to be defined. In adults with severe COVID-19, neutrophil activation has been shown to be central to overactive inflammatory responses and complications. Thus, we sought to define neutrophil activation in children with MIS-C and acute COVID-19.

View Article and Find Full Text PDF

Background: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance.

Methods: Respiratory swabs were collected from children with COVID-19.

View Article and Find Full Text PDF

Background: Data on pediatric COVID-19 has lagged behind adults throughout the pandemic. An understanding of SARS-CoV-2 viral dynamics in children would enable data-driven public health guidance.

Methods: Respiratory swabs were collected from children with COVID-19.

View Article and Find Full Text PDF

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.

View Article and Find Full Text PDF

Hotorobo, Woes, and Monty are newly isolated bacteriophages of Gordonia terrae 3612. The three phages are related, and their genomes are similarly sized (76,972 bp, 73,752 bp, and 75,680 bp for Hotorobo, Woes, and Monty, respectively) and organized. They have extremely long tails and among the longest tape measure protein genes described to date.

View Article and Find Full Text PDF