Publications by authors named "Jamesina J Simpson"

A design challenge for photodiodes yielding both high speed and responsivity is the necessity to concentrate incident light into a subwavelength active volume region. Photonic nanojets have been reported in the literature as a means to focus an incident plane wave to a subwavelength-waist propagating beam with applications ranging from next-generation DVDs to characterizing subwavelength features within dielectric targets. In the present work, a new application of photonic nanojets is proposed, focusing electromagnetic energy into a photodiode.

View Article and Find Full Text PDF

Photonic nanojets have been previously shown (both theoretically and experimentally) to be highly sensitive to the presence of an ultra-subwavelength nanoscale particle within the nanojet. In the present work, photonic nanojets elongated by almost an order of magnitude (relative to the latest previously published work) are found to possess another key characteristic: they are sensitive to the presence of ultra-subwavelength nanoscale thin features embedded within a dielectric object. This additional characteristic of photonic nanojets is demonstrated through comparisons between fundamentally different 3-D and corresponding 1-D full Maxwell's equations finite-difference time-domain (FDTD) models.

View Article and Find Full Text PDF

This Letter presents a scattered-field formulation for modeling dispersive media using the finite-difference time-domain (FDTD) method. Specifically, the auxiliary differential equation method is applied to Drude and Lorentz media for a scattered field FDTD model. The present technique can also be applied in a straightforward manner to Debye media.

View Article and Find Full Text PDF

We theoretically investigate light scattering from a bi-sphere system consisting of a gold nanosphere and a lossless dielectric microsphere illuminated at a resonant optical wavelength of the microsphere. Using generalized multisphere Mie theory, we find that a gold nanosphere 100 times smaller than the dielectric microsphere can be detected with a subdiffraction resolution as fine as one-third wavelength in the background medium when the microsphere is illuminated at a Mie resonance. Otherwise, off-resonance, the spatial resolution reverts to that of the nonresonant nanojet, approximately one-half wavelength in the background medium.

View Article and Find Full Text PDF