The global ocean's oxygen inventory is declining in response to global warming, but the future of the low-oxygen tropics is uncertain. We report new evidence for tropical oxygenation during the Paleocene-Eocene Thermal Maximum (PETM), a warming event that serves as a geologic analog to anthropogenic warming. Foraminifera-bound nitrogen isotopes indicate that the tropical North Pacific oxygen-deficient zone contracted during the PETM.
View Article and Find Full Text PDFThe geological record encodes the relationship between climate and atmospheric carbon dioxide (CO) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO record spanning the past 66 million years.
View Article and Find Full Text PDFThe chronology of the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) remains disputed, hampering complete understanding of the possible trigger mechanisms of this event. Here we present an astrochronology for the PETM carbon isotope excursion from Howards Tract, Maryland a paleoshelf environment, on the mid-Atlantic Coastal Plain. Statistical evaluation of variations in calcium content and magnetic susceptibility indicates astronomical forcing was involved and the PETM onset lasted about 6 kyr.
View Article and Find Full Text PDFMuch of our understanding of Earth's past climate comes from the measurement of oxygen and carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records lack the temporal resolution and age control needed to thoroughly categorize climate states of the Cenozoic era and to study their dynamics. Here, we present a new, highly resolved, astronomically dated, continuous composite of benthic foraminifer isotope records developed in our laboratories.
View Article and Find Full Text PDFThe cause of the end-Cretaceous mass extinction is vigorously debated, owing to the occurrence of a very large bolide impact and flood basalt volcanism near the boundary. Disentangling their relative importance is complicated by uncertainty regarding kill mechanisms and the relative timing of volcanogenic outgassing, impact, and extinction. We used carbon cycle modeling and paleotemperature records to constrain the timing of volcanogenic outgassing.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2018
'…there are known knowns. These are things we know that we know. There are known unknowns.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2018
The Palaeocene-Eocene Thermal Maximum (PETM) was a significant global warming event in Earth's deep past (56 Mya). The warming across the PETM boundary was driven by a rapid rise in greenhouse gases. The event also coincided with a time of maximum insolation in Northern Hemisphere summer.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2018
About 34 million years ago, Earth's climate cooled and an ice sheet formed on Antarctica as atmospheric carbon dioxide (CO2) fell below ~750 parts per million (ppm). Sedimentary cycles from a drill core in the western Ross Sea provide direct evidence of orbitally controlled glacial cycles between 34 million and 31 million years ago. Initially, under atmospheric CO2 levels of ≥600 ppm, a smaller Antarctic Ice Sheet (AIS), restricted to the terrestrial continent, was highly responsive to local insolation forcing.
View Article and Find Full Text PDFWe assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2013
Over the next few centuries, with unabated emissions of anthropogenic carbon dioxide (CO2), a total of 5000 Pg C may enter the atmosphere, causing CO2 concentrations to rise to approximately 2000 ppmv, global temperature to warm by more than 8(°)C and surface ocean pH to decline by approximately 0.7 units. A carbon release of this magnitude is unprecedented during the past 56 million years-and the outcome accordingly difficult to predict.
View Article and Find Full Text PDFOcean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers.
View Article and Find Full Text PDFRelative to the present day, meridional temperature gradients in the Early Eocene age ( approximately 56-53 Myr ago) were unusually low, with slightly warmer equatorial regions but with much warmer subtropical Arctic and mid-latitude climates. By the end of the Eocene epoch ( approximately 34 Myr ago), the first major Antarctic ice sheets had appeared, suggesting that major cooling had taken place. Yet the global transition into this icehouse climate remains poorly constrained, as only a few temperature records are available portraying the Cenozoic climatic evolution of the high southern latitudes.
View Article and Find Full Text PDFThe start of the Palaeocene/Eocene thermal maximum--a period of exceptional global warming about 55 million years ago--is marked by a prominent negative carbon isotope excursion that reflects a massive input of 13C-depleted ('light') carbon to the ocean-atmosphere system. It is often assumed that this carbon injection initiated the rapid increase in global surface temperatures and environmental change that characterize the climate perturbation, but the exact sequence of events remains uncertain. Here we present chemical and biotic records of environmental change across the Palaeocene/Eocene boundary from two sediment sections in New Jersey that have high sediment accumulation rates.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
July 2007
The Palaeocene-Eocene thermal maximum (PETM) is characterized by a global negative carbon isotope excursion (CIE) and widespread dissolution of seafloor carbonate sediments. The latter feature supports the hypothesis that the PETM and CIE were caused by the rapid release of a large mass (greater than 2000Gt C) of 12C-enriched carbon. The source of this carbon, however, remains a mystery.
View Article and Find Full Text PDFThe relation between the partial pressure of atmospheric carbon dioxide (pCO2) and Paleogene climate is poorly resolved. We used stable carbon isotopic values of di-unsaturated alkenones extracted from deep sea cores to reconstruct pCO2 from the middle Eocene to the late Oligocene (approximately 45 to 25 million years ago). Our results demonstrate that pCO2 ranged between 1000 to 1500 parts per million by volume in the middle to late Eocene, then decreased in several steps during the Oligocene, and reached modern levels by the latest Oligocene.
View Article and Find Full Text PDFThe Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of approximately 2000 x 10(9) metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowered deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM.
View Article and Find Full Text PDFAt the boundary between the Palaeocene and Eocene epochs, about 55 million years ago, the Earth experienced a strong global warming event, the Palaeocene-Eocene thermal maximum. The leading hypothesis to explain the extreme greenhouse conditions prevalent during this period is the dissociation of 1,400 to 2,800 gigatonnes of methane from ocean clathrates, resulting in a large negative carbon isotope excursion and severe carbonate dissolution in marine sediments. Possible triggering mechanisms for this event include crossing a threshold temperature as the Earth warmed gradually, comet impact, explosive volcanism or ocean current reorganization and erosion at continental slopes, whereas orbital forcing has been excluded.
View Article and Find Full Text PDF