Publications by authors named "James Winton"

Objective: Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus causing severe disease in freshwater and saltwater fish species. The susceptibility of endangered Pallid Sturgeon Scaphirhynchus albus to VHSV genotype IVb (VHSV-IVb) infection was investigated.

Methods: An in vitro assessment using two Pallid Sturgeon cell lines derived from skin and spleen tissue and in vivo evaluation of juvenile Pallid Sturgeon after exposure to VHSV-IVb were performed.

View Article and Find Full Text PDF

The goals of this study were to examine the effect of stocking density on the stress response and disease susceptibility in juvenile rainbow trout (). Fish were sorted into one of 2 stocking densities (high density "HD", 20-40 kg/m³) or (low density, "LD", 4-8 kg/m³) and 3 stress indices (cortisol levels in serum and water, and neutrophil: lymphocyte (N:L) ratios from blood smears) were measured at multiple time points over 21 d. Serum cortisol was significantly increased at 1 h in LD samples and at 14 d in HD samples.

View Article and Find Full Text PDF

Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout.

View Article and Find Full Text PDF

Background: Transcriptomic responses to immune stimulation were investigated in coho salmon (Oncorhynchus kisutch) with distinct growth phenotypes. Wild-type fish were contrasted to strains with accelerated growth arising either from selective breeding (i.e.

View Article and Find Full Text PDF

We report here the genome sequences of two index strains of Pacific salmon paramyxovirus isolated in 1982 and 1983 from adult salmon in Oregon. The isolates are most closely related to Atlantic salmon paramyxovirus, the type species of the genus Aquaparamyxovirus, but are sufficiently distinct to be considered two genotypes of a novel species.

View Article and Find Full Text PDF
Article Synopsis
  • Atlantic salmon gill disease causes significant financial losses in aquaculture, and until now, research tools for studying the microorganisms responsible and the fish's responses have been lacking.
  • Two gill cell lines from Atlantic salmon, ASG-10 and ASG-13, were established; ASG-10 shows specific epithelial cell markers, while ASG-13 does not have these structures.
  • Both cell lines are susceptible to various viruses affecting salmon, with ASG-10 demonstrating the ability to proliferate and migrate, making them valuable for future research on gill diseases and potential alternatives to using experimental animals.
View Article and Find Full Text PDF

Background: Salmon are paramount to the economy, ecology, and history of the Pacific Northwest. Viruses constitute one of the major threats to salmon health and well-being, with more than twenty known virus species that infect salmon. Here, we describe the isolation and characterization of the fall Chinook aquareovirus, a divergent member of the species Aquareovirus B within the family Reoviridae.

View Article and Find Full Text PDF

Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples.

View Article and Find Full Text PDF

Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality.

View Article and Find Full Text PDF

A novel virus, rainbow trout orthomyxovirus (RbtOV), was isolated in 1997 and again in 2000 from commercially-reared rainbow trout (Oncorhynchus mykiss) in Idaho, USA. The virus grew optimally in the CHSE-214 cell line at 15°C producing a diffuse cytopathic effect; however, juvenile rainbow trout exposed to cell culture-grown virus showed no mortality or gross pathology. Electron microscopy of preparations from infected cell cultures revealed the presence of typical orthomyxovirus particles.

View Article and Find Full Text PDF

Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene.

View Article and Find Full Text PDF

Infectious diseases are economically detrimental to aquaculture, and with continued expansion and intensification of aquaculture, the importance of managing infectious diseases will likely increase in the future. Here, we use evolution of virulence theory, along with examples, to identify aquaculture practices that might lead to the evolution of increased pathogen virulence. We identify eight practices common in aquaculture that theory predicts may favor evolution toward higher pathogen virulence.

View Article and Find Full Text PDF

Unlabelled: The white sucker Catostomus commersonii is a freshwater teleost often utilized as a resident sentinel. Here, we sequenced the full genome of a hepatitis B-like virus that infects white suckers from the Great Lakes Region of the United States. Dideoxy sequencing confirmed that the white sucker hepatitis B virus (WSHBV) has a circular genome (3,542 bp) with the prototypical codon organization of hepadnaviruses.

View Article and Find Full Text PDF

Viral erythrocytic necrosis (VEN) is a condition affecting the red blood cells of more than 20 species of marine and anadromous fishes in the North Atlantic and North Pacific Oceans. Among populations of Pacific herring (Clupea pallasii) on the west coast of North America the disease causes anemia and elevated mortality in periodic epizootics. Presently, VEN is diagnosed by observation of typical cytoplasmic inclusion bodies in stained blood smears from infected fish.

View Article and Find Full Text PDF

Mass mortality events in wild fish due to infectious diseases are troubling, especially given the potential for long-term, population-level consequences. Evolutionary theory predicts that populations with sufficient genetic variation will adapt in response to pathogen pressure. Chinook Salmon Oncorhynchus tshawytscha were introduced into Lake Michigan in the late 1960s from a Washington State hatchery population.

View Article and Find Full Text PDF

During both regulatory and routine surveillance sampling of baitfish from the states of Illinois, Minnesota, Montana, and Wisconsin, USA, isolates (n = 20) of a previously unknown picornavirus were obtained from kidney/spleen or entire viscera of fathead minnows (Pimephales promelas) and brassy minnows (Hybognathus hankinsoni). Following the appearance of a diffuse cytopathic effect, examination of cell culture supernatant by negative contrast electron microscopy revealed the presence of small, round virus particles (∼ 30-32 nm), with picornavirus-like morphology. Amplification and sequence analysis of viral RNA identified the agent as a novel member of the Picornaviridae family, tentatively named fathead minnow picornavirus (FHMPV).

View Article and Find Full Text PDF

Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene.

View Article and Find Full Text PDF

Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients.

View Article and Find Full Text PDF

Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic-a round, magenta-colored, 0.8-μm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors.

View Article and Find Full Text PDF

In 2003, viral hemorrhagic septicemia virus (VHSV) emerged in the Laurentian Great Lakes causing serious losses in a number of ecologically and recreationally important fish species. Within six years, despite concerted managerial preventive measures, the virus spread into the five Great Lakes and to a number of inland waterbodies. In response to this emerging threat, cooperative efforts between the Michigan Department of Natural Resources (MI DNR), the Michigan State University Aquatic Animal Health Laboratory (MSU-AAHL), and the United States Department of Agriculture-Animal and Plant Health Inspection Services (USDA-APHIS) were focused on performing a series of general and VHSV-targeted surveillances to determine the extent of virus trafficking in the State of Michigan.

View Article and Find Full Text PDF

Viral traffic occurs readily between wild and domesticated stocks of finfish because aquatic environments have greater connectivity than their terrestrial counterparts and because the global expansion and dynamic nature of intensive aquaculture provide multiple pathways of transmission and unique drivers of virus adaptation. Supported by examples from the literature, we provide reasons why viruses move from wild fish reservoirs to infect domestic fish in aquaculture more readily than 'domestic' viruses move across the interface to infect wild stocks. We also hypothesize that 'wild' viruses moving across the interface to domestic populations of finfish are more frequently associated with disease outbreaks and host switches compared to domestic viruses that cross the interface to infect wild fish.

View Article and Find Full Text PDF

A bacilliform virus was isolated from diseased fathead minnows (Pimephales promelas). Analysis of the complete genome coding for the polyprotein (pp1ab), spike (S), membrane (M) and nucleocapsid (N) proteins revealed that the virus was most like white bream virus (WBV), another bacilliform virus isolated from white bream (Blicca bjoerkna L.) and the type species of the genus Bafinivirus within the order Nidovirales.

View Article and Find Full Text PDF

Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003.

View Article and Find Full Text PDF

Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates.

View Article and Find Full Text PDF