Publications by authors named "James Willson"

Motivation: Genes evolve under processes such as gene duplication and loss (GDL), so that gene family trees are multi-copy, as well as incomplete lineage sorting (ILS); both processes produce gene trees that differ from the species tree. The estimation of species trees from sets of gene family trees is challenging, and the estimation of rooted species trees presents additional analytical challenges. Two of the methods developed for this problem are STRIDE, which roots species trees by considering GDL events, and Quintet Rooting (QR), which roots species trees by considering ILS.

View Article and Find Full Text PDF
Article Synopsis
  • Species tree inference faces challenges due to gene tree heterogeneity caused by gene duplication and loss, making accurate estimation difficult.
  • Current methods addressing this issue often require significant time and memory resources.
  • The new approach, DISCO, decomposes multi-copy gene family trees into single copy trees, improving accuracy in species tree estimation while being more efficient than existing methods.
View Article and Find Full Text PDF

Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer.

View Article and Find Full Text PDF

Agents that promote tissue regeneration could be beneficial in a variety of clinical settings, such as stimulating recovery of the hematopoietic system after bone marrow transplantation. Prostaglandin PGE2, a lipid signaling molecule that supports expansion of several types of tissue stem cells, is a candidate therapeutic target for promoting tissue regeneration in vivo. Here, we show that inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme, potentiates tissue regeneration in multiple organs in mice.

View Article and Find Full Text PDF

We used whole-exome and targeted sequencing to characterize somatic mutations in 103 colorectal cancers (CRC) from African Americans, identifying 20 new genes as significantly mutated in CRC. Resequencing 129 Caucasian derived CRCs confirmed a 15-gene set as a preferential target for mutations in African American CRCs. Two predominant genes, ephrin type A receptor 6 (EPHA6) and folliculin (FLCN), with mutations exclusive to African American CRCs, are by genetic and biological criteria highly likely African American CRC driver genes.

View Article and Find Full Text PDF

Tumor progression is driven by genetic mutations, but little is known about the environmental conditions that select for these mutations. Studying the transcriptomes of paired colorectal cancer cell lines that differed only in the mutational status of their KRAS or BRAF genes, we found that GLUT1, encoding glucose transporter-1, was one of three genes consistently up-regulated in cells with KRAS or BRAF mutations. The mutant cells exhibited enhanced glucose uptake and glycolysis and survived in low-glucose conditions, phenotypes that all required GLUT1 expression.

View Article and Find Full Text PDF

Aberrant glycosylation is a pathological alteration that is widespread in colon cancer, and usually accompanies the onset and progression of the disease. To date, the molecular mechanisms underlying aberrant glycosylation remain largely unknown. In this study, we identify somatic and germ-line mutations in the gene encoding for polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) in individuals with colon cancer.

View Article and Find Full Text PDF

We have performed a genome-wide analysis of copy number changes in breast and colorectal tumors using approaches that can reliably detect homozygous deletions and amplifications. We found that the number of genes altered by major copy number changes, deletion of all copies or amplification to at least 12 copies per cell, averaged 17 per tumor. We have integrated these data with previous mutation analyses of the Reference Sequence genes in these same tumor types and have identified genes and cellular pathways affected by both copy number changes and point alterations.

View Article and Find Full Text PDF

Objectives: To analyze the impact of surgical margins and other clinicopathological data on treatment outcomes on 75 patients treated from 1999 to 2006 by initial potentially curative surgery (+/- intraoperative radiotherapy), followed by high-dose 3-dimensional conformal radiation therapy and concomitant fluoropyrimidine-based chemoradiotherapy.

Materials And Methods: All clinical and pathologic data on this patient cohort were analyzed by actuarial Kaplan-Meier survival methodology and by univariate and multivariate Cox proportional hazards methods to measure effects on survival and patterns of failure.

Results: With a median follow-up of 28 months, the median, 2-year and 5-year overall survival (OS) rates were 18.

View Article and Find Full Text PDF

Expression microarrays identified a novel transcript, designated as Ugene, whose expression is absent in normal colon and colon adenomas, but that is commonly induced in malignant colon cancers. These findings were validated by real-time PCR and Northern blot analysis in an independent panel of colon cancer cases. In addition, Ugene expression was found to be elevated in many other common cancer types, including breast, lung, uterus, and ovary.

View Article and Find Full Text PDF

MicroRNAs (miRNA/miR) are a class of small noncoding RNAs implicated in the pathogenesis of various malignancies. In the current study, using micro(RNA) arrays, we found a ubiquitous loss of miR-126 expression in colon cancer lines when compared to normal human colon epithelia. Reconstitution of miR-126 in colon cancer cells resulted in a significant growth reduction as evidenced in clonogenic assays.

View Article and Find Full Text PDF

The mutational inactivation of transforming growth factor beta receptor type II (TGFBR2) occurs in approximately 30% of colon cancers and promotes the formation of colon cancer by inhibiting the tumor suppressor activity of the TGFB signaling pathway. TGFBR2 mutations occur in >90% of microsatellite unstable (MSI) colon cancers and affect a polyadenine tract in exon 3 of TGFBR2, called BAT-RII, which is vulnerable to mutation in the setting of DNA mismatch repair (MMR) system deficiency. In light of the vulnerable nature of the BAT-RII tract in the setting of MMR inactivation and the favorable effects of TGFBR2 inactivation in colon cancer, analysis of TGFBR2 inactivation provides an opportunity to assess the roles of genomic instability vs.

View Article and Find Full Text PDF

Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency.

View Article and Find Full Text PDF

PIK3CA, encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K), is mutated in a variety of human cancers. We screened the colon cancer cell lines previously established in our laboratory for PIK3CA mutations and found that four of them harbored gain of function mutations. We have now compared a panel of mutant and wild-type cell lines for cell proliferation and survival in response to stress.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) is widely expressed in a number of solid tumors including colorectal cancers. Overexpression of this receptor is one means by which a cell can achieve positive signals for survival and proliferation; another effective means is by constitutive activation of EGFR. We have elucidated the role of constitutive EGFR signaling in malignant progression by stably transfecting colon cancer cells with a human transforming growth factor-alpha cDNA (a ligand for EGFR) under repressible control by tetracycline.

View Article and Find Full Text PDF

The elucidation of the human genome sequence has made it possible to identify genetic alterations in cancers in unprecedented detail. To begin a systematic analysis of such alterations, we determined the sequence of well-annotated human protein-coding genes in two common tumor types. Analysis of 13,023 genes in 11 breast and 11 colorectal cancers revealed that individual tumors accumulate an average of approximately 90 mutant genes but that only a subset of these contribute to the neoplastic process.

View Article and Find Full Text PDF

Coexpression of the epidermal growth factor receptor (EGFR) family receptors is found in a subset of colon cancers, which may cooperatively promote cancer cell growth and survival, as heterodimerization is known to provide for diversification of signal transduction. Recently, efforts have been made to develop novel 4-anilinoquinazoline and pyridopyrimidine derivatives to inhibit EGFR and ErbB2 kinases simultaneously. In this study, we tested the efficacy of a novel reversible dual inhibitor GW572016 compared with the selective EGFR and ErbB2 tyrosine kinase inhibitors (TKI) AG1478 and AG879 and their combination, using the human colon adenocarcinoma GEO mode.

View Article and Find Full Text PDF

Protein kinases are enzymes that are important for controlling cellular growth and invasion, and their malfunction is implicated in the development of some tumours. We analysed human colorectal cancers for genetic mutations in 340 serine/threonine kinases and found mutations in eight genes, including in three members of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway. The discovery of this mutational activation of a key cell-signalling pathway may provide new targets for therapeutic intervention.

View Article and Find Full Text PDF
Article Synopsis
  • * The study used methylation-specific PCR to analyze vimentin methylation in colon cancer, finding it was unmethylated in normal tissues but methylated in a significant percentage of cancerous tissues.
  • * Aberrant methylation of vimentin in fecal DNA showed a sensitivity of around 46% for detecting colon cancer, while maintaining a high specificity of 90% for cancer-free controls, suggesting its potential as a novel biomarker.
View Article and Find Full Text PDF

The role of the ErbB family in supporting the malignant phenotype was characterized by stable transfection of a single chain antibody (ScFv5R) against ErbB2 containing a KDEL endoplasmic reticulum retention sequence into GEO human colon carcinoma cells. The antibody traps ErbB2 in the endoplasmic reticulum, thereby down-regulating cell surface ErbB2. The transfected cells showed inactivation of ErbB2 tyrosine phosphorylation and reduced heterodimerization of ErbB2 and ErbB3.

View Article and Find Full Text PDF

Cancers of the colon and rectum are the second leading cause of cancer death among adult Americans. When detected at early stages, colon cancer is highly curable. Colonoscopy, an effective but invasive screening test, has been limited in its public acceptance.

View Article and Find Full Text PDF

Marked increased expression of cyclooxygenase 2 (COX-2), a prostaglandin-synthesizing enzyme that is pharmacologically inhibited by nonsteroid anti-inflammatory-type drugs, is a major early oncogenic event in the genesis of human colon neoplasia. We report that, in addition to inducing expression of COX-2, colon cancers further target the prostaglandin biogenesis pathway by ubiquitously abrogating expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a prostaglandin-degrading enzyme that physiologically antagonizes COX-2. We find that 15-PGDH transcript and protein are both highly expressed by normal colonic epithelia but are nearly undetectable in colon cancers.

View Article and Find Full Text PDF

alpha-latrotoxin (LTX), a 120 kDa protein in black widow spider venom, triggers massive neurotransmitter exocytosis. Previous studies have highlighted a role for both intrinsic pore-forming activity and receptor binding in the action of this toxin. Intriguingly, activation of a presynaptic G protein-coupled receptor, latrophilin, may trigger release independent of pore-formation.

View Article and Find Full Text PDF