Publications by authors named "James W Pearce Higgins"

We discuss the outcomes of our 16th horizon scan of issues that are novel or represent a considerable step-change and have the potential to substantially affect conservation of biological diversity in the coming decade. From an initial 96 topics, our international panel of 32 scientists and practitioners prioritised 15 issues. Technological advances are prominent, including metal and non-metal organic frameworks, deriving rare earth elements from macroalgae, synthetic gene drives in plants, and low-emission cement.

View Article and Find Full Text PDF

We present the results of our 15th horizon scan of novel issues that could influence biological conservation in the future. From an initial list of 96 issues, our international panel of scientists and practitioners identified 15 that we consider important for societies worldwide to track and potentially respond to. Issues are novel within conservation or represent a substantial positive or negative step-change with global or regional extents.

View Article and Find Full Text PDF

Failure to adapt migration timing to changes in environmental conditions along migration routes and at breeding locations can result in mismatches across trophic levels, as occurs between the brood parasitic common cuckoo and its hosts. Using satellite tracking data from 87 male cuckoos across 11 years, we evaluate why the cuckoo has not advanced its arrival to the UK. Across years, breeding ground arrival was primarily determined by timing of departure from stopover in West Africa before northward crossing of the Sahara.

View Article and Find Full Text PDF

Landscape fires are a natural component of the Earth System. However, they are of growing global concern due to climate change exacerbating their multiple impacts on biodiversity, ecosystems, carbon storage, human health, economies, and wider society. Temperate regions are predicted to be at greatest risk of increasing fire activity due to climate change, where fires can seriously impact important ecosystems for biodiversity and carbon storage, such as peatlands and forests.

View Article and Find Full Text PDF

Large-scale declines in terrestrial insects have been reported over much of Europe and across the world, however, population change assessments of other key invertebrate groups, such as soil invertebrates, have been largely neglected through a lack of available monitoring data. This study collates historic data from previously published studies to assess whether it is possible to infer previously undocumented long-term changes in soil invertebrate abundance. Earthworm and tipulid data were collated from over 100 studies across the UK, spanning almost 100 years.

View Article and Find Full Text PDF

We present the results of our 14th horizon scan of issues we expect to influence biological conservation in the future. From an initial set of 102 topics, our global panel of 30 scientists and practitioners identified 15 issues we consider most urgent for societies worldwide to address. Issues are novel within biological conservation or represent a substantial positive or negative step change at global or regional scales.

View Article and Find Full Text PDF

There is in an ongoing expansion of powerlines as a result of an increasing global demand for energy. Powerlines have the potential to negatively impact wild bird populations through collisions and/or electrocution, and reducing bird powerline collision and electrocution risk is a priority for companies running high-voltage powerlines (known as Transmission System Operators (TSOs)). Most TSOs are legally required to assess any potentially significant impacts via Enivronmental Impact Assessments, and so potentially collect a significant amount of data on the presence of species, species behaviour, and observed mortality rates.

View Article and Find Full Text PDF

Despite their importance for biodiversity and ecosystem services, wetlands are among the most threatened ecosystems globally. The conservation of many migratory waterbirds depends on the conservation of a network of key sites along their flyways. However, the suitability of these sites is changing under climate change, and it is important that management of individual sites in the network adapts to these changes.

View Article and Find Full Text PDF

Climate warming has caused the seasonal timing of many components of ecological food chains to advance. In the context of trophic interactions, the match-mismatch hypothesis postulates that differential shifts can lead to phenological asynchrony with negative impacts for consumers. However, at present there has been no consistent analysis of the links between temperature change, phenological asynchrony and individual-to-population-level impacts across taxa, trophic levels and biomes at a global scale.

View Article and Find Full Text PDF

Natural and seminatural ecosystems must be at the forefront of efforts to mitigate and adapt to climate change. In the urgency of current circumstances, ecosystem restoration represents a range of available, efficient, and effective solutions to cut net greenhouse gas emissions and adapt to climate change. Although mitigation success can be measured by monitoring changing fluxes of greenhouse gases, adaptation is more complicated to measure, and reductions in a wide range of risks for biodiversity and people must be evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • The horizon scan identifies 15 emerging issues relevant to global conservation as of 2020, focusing on significant changes in vegetation and ecological systems.
  • Some changes are currently happening, like the shift from kelp forests to simpler macroalgal systems, while others may develop in the future, such as advancements in nanocellulose and the rise of small hydropower.
  • A panel of 23 experts used a modified Delphi technique to shortlist these issues from an original list of 89 potential topics, underscoring their importance for future conservation debates.
View Article and Find Full Text PDF

Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type.

View Article and Find Full Text PDF

We present the results of our tenth annual horizon scan. We identified 15 emerging priority topics that may have major positive or negative effects on the future conservation of global biodiversity, but currently have low awareness within the conservation community. We hope to increase research and policy attention on these areas, improving the capacity of the community to mitigate impacts of potentially negative issues, and maximise the benefits of issues that provide opportunities.

View Article and Find Full Text PDF

Farmland birds are among the most threatened bird species in Europe, largely as a result of agricultural intensification which has driven widespread biodiversity losses. Breeding waders associated with grassland and arable habitats are particularly vulnerable and a frequent focus of agri-environment schemes (AES) designed to halt and reverse population declines. We review existing literature, providing a quantitative assessment of the effectiveness of policy and management interventions used throughout Europe to improve population and demographic metrics of grassland-breeding waders.

View Article and Find Full Text PDF

Increasing temperatures associated with climate change may generate phenological mismatches that disrupt previously synchronous trophic interactions. Most work on mismatch has focused on temporal trends, whereas spatial variation in the degree of trophic synchrony has largely been neglected, even though the degree to which mismatch varies in space has implications for meso-scale population dynamics and evolution. Here we quantify latitudinal trends in phenological mismatch, using phenological data on an oak-caterpillar-bird system from across the UK.

View Article and Find Full Text PDF

This is our ninth annual horizon scan to identify emerging issues that we believe could affect global biological diversity, natural capital and ecosystem services, and conservation efforts. Our diverse and international team, with expertise in horizon scanning, science communication, as well as conservation science, practice, and policy, reviewed 117 potential issues. We identified the 15 that may have the greatest positive or negative effects but are not yet well recognised by the global conservation community.

View Article and Find Full Text PDF

Modelling species distribution and abundance is important for many conservation applications, but it is typically performed using relatively coarse-scale environmental variables such as the area of broad land-cover types. Fine-scale environmental data capturing the most biologically relevant variables have the potential to improve these models. For example, field studies have demonstrated the importance of linear features, such as hedgerows, for multiple taxa, but the absence of large-scale datasets of their extent prevents their inclusion in large-scale modelling studies.

View Article and Find Full Text PDF

A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such "trophic asynchrony" is hypothesized to have contributed to recent population declines of long-distance migratory birds in particular.

View Article and Find Full Text PDF

Mitigation of anthropogenic climate change involves deployments of renewable energy worldwide, including wind farms, which can pose a significant collision risk to volant animals. Most studies into the collision risk between species and wind turbines, however, have taken place in industrialized countries. Potential effects for many locations and species therefore remain unclear.

View Article and Find Full Text PDF

Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.

View Article and Find Full Text PDF

Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions.

View Article and Find Full Text PDF

Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change.

View Article and Find Full Text PDF

Many factors may affect daily nest survival. We present a novel multi-state, multi-stage model to estimate daily survival for each nest stage, daily hatching probability and probability that a failed nest died during a specific stage when stage of failure is unknown. The model does not require that hatching date be known.

View Article and Find Full Text PDF

We present the results of our eighth annual horizon scan of emerging issues likely to affect global biological diversity, the environment, and conservation efforts in the future. The potential effects of these novel issues might not yet be fully recognized or understood by the global conservation community, and the issues can be regarded as both opportunities and risks. A diverse international team with collective expertise in horizon scanning, science communication, and conservation research, practice, and policy reviewed 100 potential issues and identified 15 that qualified as emerging, with potential substantial global effects.

View Article and Find Full Text PDF