Mono- and dinuclear calcium complexes of the Schiff-base macrocycles H4L have been prepared and characterized spectroscopically and crystallographically. In the formation of Ca(THF)2(H2L(1)), Ca2(THF)2(μ-THF)(L(1)), and Ca2(THF)4(L(2)), the ligand framework adopts a bowl-shaped conformation instead of the conventional wedge, Pacman-shaped structure as seen with the anthracenyl-hinged complex Ca2(py)5(L(3)). The mononuclear calcium complex Ca(THF)2(H2L(1)) reacts with various equivalents of LiN(SiMe3)2 to form calcium/alkali metal clusters and dinuclear transition metal complexes when reacted subsequently with transition metal salts.
View Article and Find Full Text PDFA series of polydentate dual-compartment, Schiff-base pyrrole macrocycles has been prepared through the straightforward Lewis acid catalysed [1 + 1] condensation reactions between ONO or O(5)-linked aryldiamines and dipyrromethane dialdehydes. These macrocycles display hydrogen-bond acceptor and donor properties and provide distinct N(4) and O(5)/ONO donor sets for metallation reactions, so forming alkali, alkaline earth, and transition metal complexes that were characterised spectroscopically and crystallographically. While the conformationally flexible O(5) donor set allows the formation of helical potassium salt structures, the transition metal complexes of all variants of these macrocycles invariably adopt wedged, Pacman-shaped structures in which the metal is bound in the pyrrole-imine N(4) donor set, so leaving the ONO/O(5) donor set pendant and apical.
View Article and Find Full Text PDFHydrolysis of a Pacman-shaped binuclear magnesium complex of a polypyrrolic Schiff base macrocycle results in the formation of a new magnesium hydroxide cubane that is encapsulated by the macrocyclic framework through both coordinative and hydrogen-bonding interactions.
View Article and Find Full Text PDFA cobalt aquo-hydroxo complex of a ditopic Schiff-base pyrrole-crown ether macrocycle has been prepared and forms a rigid Pacman-clefted structure that assembles through hydrogen-bonding into a hexagonal wheel motif in the solid state.
View Article and Find Full Text PDFThe syntheses and characterization of a series of binuclear cobalt complexes of the octadentate Schiff-base calixpyrrole ligand L are described. The cobalt(II) complex [Co(2)(L)] was prepared by a transamination method and was found to adopt a wedged, Pac-man geometry in the solid state and in solution. Exposure of this compound to dioxygen resulted in the formation of a 90:10 mixture of the peroxo [Co(2)(O(2))(L)] and superoxo [Co(2)(O(2))(L)](+) complexes in which the peroxo ligand was found to bind in a Pauling mode in the binuclear cleft in pyridine and acetonitrile adducts in the solid state.
View Article and Find Full Text PDFThe syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).
View Article and Find Full Text PDF