Publications by authors named "James W Gurd"

N-methyl-D-aspartate receptors (NMDARs) mediate essential neuronal excitation, but overactivation of NMDARs results in excitotoxic cell death in a variety of pathologic conditions, including status epilepticus (SE). Although NMDAR antagonists attenuate SE-induced brain injury, undesirable side effects have limited their clinical efficacy. Tat-NR2B9c was designed to disrupt protein interactions involving postsynaptic density protein 95 in the NMDAR signaling complex while not interfering with function of the NMDAR ion channel.

View Article and Find Full Text PDF

Gamma-aminobutyric acid type A receptors (GABA(A)Rs) that contain the alpha 5 subunit are expressed predominantly in the hippocampus, where they regulate learning and memory processes. Unlike conventional postsynaptic receptors, GABA(A)Rs containing the alpha 5 subunit (alpha 5 GABA(A)Rs) are localized primarily to extrasynaptic regions of neurons, where they generate a tonic inhibitory conductance. The unique characteristics of alpha 5 GABA(A)Rs have been examined with pharmacological, immunostaining, and electrophysiological techniques; however, little is known about their biochemical properties.

View Article and Find Full Text PDF

Ca2+-stimulated protein kinase II (CaMKII) is critically involved in the regulation of synaptic function and is implicated in the neuropathology associated with ischemia and status epilepticus (SE). The activity and localization of CaMKII is regulated by multi-site phosphorylation. In the present study we investigated the effects of global ischemia followed by reperfusion and of SE on the phosphorylation of CaMKII on T253 in rat forebrains and compared this to the phosphorylation of T286.

View Article and Find Full Text PDF

Lipid rafts (LR) are lipid microdomains present in the cell surface membrane that are organizational platforms involved in protein trafficking and formation of cell signaling complexes. In the adult brain, NMDA receptors (NMDAR) and receptor-associated proteins such as membrane-associated guanylate kinases (PSD-95 and SAP102), are distributed between the postsynaptic density (PSD) and lipid rafts. However, the time course of the association of NMDAR with LR during neural development is not known.

View Article and Find Full Text PDF

Using mRNA differential display to identify cerebral ischemia-responsive mRNAs, we isolated and cloned a cDNA derived from a novel gene, that has been designated LCHN. Antisense mRNA in situ hybridization and immunoblotting confirmed LCHN expression to be induced in the rat hippocampus following transient forebrain ischemia. The deduced amino acid sequence of the novel LCHN cDNA contains an open reading frame of 455 amino acids, encoding a protein with a predicted molecular mass of approximately 51 kDa.

View Article and Find Full Text PDF

Autophosphorylation of Ca(2+)-calmodulin stimulated protein kinase II (CaMKII) at two sites (Thr286 and Thr305/306) is known to regulate the subcellular location and activity of this enzyme in vivo. CaMKII is also known to be autophosphorylated at Thr253 in vitro but the functional effect of phosphorylation at this site and whether it occurs in vivo, is not known. Using antibodies that specifically recognize CaMKII phosphorylated at Thr253 together with FLAG-tagged wild type and phospho- and dephospho-mimic mutants of alpha-CaMKII, we have shown that Thr253 phosphorylation has no effect on either the Ca(2+)-calmodulin dependent or autonomous kinase activity of recombinant alpha-CaMKII in vitro.

View Article and Find Full Text PDF

The administration of lithium followed by pilocarpine induces status epilepticus (SE) that produces neurodegeneration and the subsequent development of spontaneous recurrent seizures. We have reported that tyrosine phosphorylation of the NMDA receptor is elevated over controls for several hours following 60 min of SE. In the current study, we assessed the temporal relationship between tyrosine phosphorylation of the NMDA receptor and the onset of SE.

View Article and Find Full Text PDF

The effects of transient cerebral hypoxia-ischemia (HI) on phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor were investigated in 7 (P7)- and 21 (P21)-day-old rats. Unilateral HI was induced by ligation of the right common carotid artery and exposure to 8% O(2)/92% N(2) for 120 (P7) or 90 (P21) min. Phosphorylation by protein kinase A (PKA; S897) and PKC (S896 and S890) was depressed in the ipsilateral hemisphere relative to both naïve controls and the contralateral hemisphere immediately following HI at both ages.

View Article and Find Full Text PDF

Lipid rafts are specialized plasma membrane microdomains enriched in cholesterol and sphingolipids that serve as major assembly and sorting platforms for signal transduction complexes. Constitutively expressed heat shock proteins Hsp90, Hsc70, Hsp60, and Hsp40 and a range of neurotransmitter receptors are present in lipid rafts isolated from rat forebrain and cerebellum. Depletion of cholesterol dissociates these proteins from lipid rafts.

View Article and Find Full Text PDF

Ischemia results in increased phosphorylation of NMDA receptors. To investigate the possible role of lipid rafts in this increase, lipid rafts and post-synaptic densities (PSDs) were isolated by the extraction of rat brain synaptosomes with Triton X-100 followed by sucrose density gradient centrifugation. Lipid rafts accounted for the majority of PSD-95, whereas SAP102 was predominantly located in PSDs.

View Article and Find Full Text PDF

In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter l-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding.

View Article and Find Full Text PDF

The role of protein kinase C (PKC) in tyrosine phosphorylation of the N-methyl-d-aspartate receptor (NMDAR) following transient cerebral ischemia was investigated. Transient (15 min) cerebral ischemia was produced in adult rats by four-vessel occlusion and animals allowed to recover for 15 or 45 min. Following ischemia, tyrosine phosphorylation of NR2A and NR2B and activated Src-family kinases (SFKs) and Pyk2 were increased in post-synaptic densities (PSDs).

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NMDARs) mediate ischemic brain damage but also mediate essential neuronal excitation. To treat stroke without blocking NMDARs, we transduced neurons with peptides that disrupted the interaction of NMDARs with the postsynaptic density protein PSD-95. This procedure dissociated NMDARs from downstream neurotoxic signaling without blocking synaptic activity or calcium influx.

View Article and Find Full Text PDF

The effect of cerebral hypoxia-ischemia (HI) on levels and tyrosine phosphorylation of the NMDA receptor was examined in 7- (P7) and 21 (P21)-day-old rats. Unilateral HI was administered by ligation of the right common carotid artery and exposure to an atmosphere of 8% O2/92% N2 for 2 (P7) or 1.5 (P21) h.

View Article and Find Full Text PDF

Live-trapping of animals in natural populations is one of the main ways to determine population processes. We examined the effects of live-trapping on the expression of N-methyl-aspartate (NMDA) receptor subunits in the hippocampus of snowshoe hares. Snowshoe hares were obtained either with or without the stress of live-trapping.

View Article and Find Full Text PDF