Studies of the activation of FXII in both platelet poor plasma and in neat buffer solutions were undertaken for a series of mixed thiol self-assembled monolayers spanning a broad range of water wettability. A wide spectrum of carboxyl/methyl-, hydroxyl/methyl-, and amine/methyl-thiol modified surfaces were prepared, characterized, and then utilized as the procoagulant materials in a series of FXII activation studies. X-ray photoelectron spectroscopy was utilized to verify the sample surface's thiol composition and contact angles measured to determine the sample surface's wettability.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2014
Blood coagulation and platelet adhesion remain major impediments to the use of biomaterials in implantable medical devices. There is still significant controversy and question in the field regarding the role that surfaces play in this process. This manuscript addresses this topic area and reports on state of the art in the field.
View Article and Find Full Text PDFTraditional biochemistry of contact activation of blood coagulation suggesting that anionic hydrophilic surfaces are specific activators of the cascade is inconsistent with known trends in protein adsorption. To investigate contact activation reactions, a chromogenic assay was used to measure prekallkrein (PK) hydrolysis to kallikrein (Kal) by activated factor XII (FXIIa) at test hydrophilic (clean glass) and hydrophobic (silanized glass) surfaces in the presence of bovine serum albumin (BSA). Hydrolysis of PK by FXIIa is detected after contact of the zymogen FXII with a test hydrophobic surface only if putatively-adsorbed FXIIa is competitively displaced by BSA.
View Article and Find Full Text PDF