Publications by authors named "James Tunnell"

Article Synopsis
  • * The study introduces a novel model called In-and-Out Net, which uses Generative Adversarial Networks (GAN) to convert Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin (H&E) stained images, optimizing the visualization of tissue samples.
  • * The research validates the model's effectiveness through a series of analyses and showcases its potential as a valuable tool for enhancing histological image analysis without the typical registration challenges.
View Article and Find Full Text PDF

Virtual staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, virtual staining offers an efficient and low infrastructure alternative. Leveraging microscopy-based techniques, such as confocal microscopy, researchers can expedite tissue analysis without the need for physical sectioning.

View Article and Find Full Text PDF

Significance: Traditional pathology workflow suffers from limitations including biopsy invasiveness, small fraction of large tissue samples being analyzed, and complex and time-consuming processing.

Aim: We address limitations of conventional pathology workflow through development of a laser microbiopsy device for minimally invasive harvest of sub-microliter tissue volumes. Laser microbiopsy combined with rapid diagnostic methods, such as virtual hematoxylin and eosin (H&E) imaging has potential to provide rapid minimally invasive tissue diagnosis.

View Article and Find Full Text PDF

Objective: While lipid-lowering drugs have become a mainstay of clinical therapy these treatments only slow the progression of the disease and can have side effects. Thus, new treatment options are needed to supplement the effects of lipid lowering therapy for treating atherosclerosis. We examined the use of an inexpensive and widely available marine polysaccharide rhamnan sulfate as an oral therapeutic for limiting vascular inflammation and atherosclerosis.

View Article and Find Full Text PDF
Article Synopsis
  • Raman spectroscopy (RS) helps in diagnosing skin cancer during Mohs micrographic surgery, but its accuracy is affected by similarities between tumors and normal tissue.
  • This study aims to enhance RS specificity for basal cell carcinoma (BCC) by using a deep learning model trained on reflectance confocal microscopy (RCM) images to differentiate between normal skin structures and tumors.
  • The results show that integrating RCM with RS improved the specificity of BCC detection from 84.2% to 92.4%, while maintaining perfect sensitivity.
View Article and Find Full Text PDF

Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects.

View Article and Find Full Text PDF

In the present study, we demonstrate that soft tissue fiber architectural maps captured using polarized spatial frequency domain imaging (pSFDI) can be utilized as an effective texture source for DIC-based planar surface strain analyses. Experimental planar biaxial mechanical studies were conducted using pericardium as the exemplar tissue, with simultaneous pSFDI measurements taken. From these measurements, the collagen fiber preferred direction [Formula: see text] was determined at the pixel level over the entire strain range using established methods ( https://doi.

View Article and Find Full Text PDF

This study aimed at answering three research questions: (1) Under the experimental conditions studied, what is the dominant mechanism of Holmium:YAG lithotripsy with or without pulse modulation? (2) Under what circumstances can laser pulse modulation increase crater volume of stone ablation per joule of emitted radiant energy? (3) Are BegoStone phantoms a suitable model for laser lithotripsy studies? The research questions were addressed by ablation experiments with BegoStone phantoms and native stones. Experiments were performed under three stone conditions: dry stones in air, hydrated stones in air, and hydrated stones in water. Single pulses with and without pulse modulation were applied.

View Article and Find Full Text PDF

Recent focus on cancer immunotherapies has led to significant interest in the development of therapeutic strategies that can lead to immunogenic cell death (ICD), which can cause activation of an immune response against tumor cells and improve immunotherapy outcomes by enhancing the immunogenicity of the tumor microenvironment. In this work, a nanomedicine-mediated combination therapy is used to deliver the ICD inducers doxorubicin (Dox), a chemotherapeutic agent, and indocyanine green (ICG), a photothermal agent. These agents are loaded into nanoparticles (NPs) of bovine serum albumin (BSA) that are prepared through a desolvation process.

View Article and Find Full Text PDF

Significance: Sub-diffuse optical properties may serve as useful cancer biomarkers, and wide-field heatmaps of these properties could aid physicians in identifying cancerous tissue. Sub-diffuse spatial frequency domain imaging (sd-SFDI) can reveal such wide-field maps, but the current time cost of experimentally validated methods for rendering these heatmaps precludes this technology from potential real-time applications.

Aim: Our study renders heatmaps of sub-diffuse optical properties from experimental sd-SFDI images in real time and reports these properties for cancerous and normal skin tissue subtypes.

View Article and Find Full Text PDF

The guest editors introduce a feature issue containing papers based on research presented at the OSA Biophotonics Congress (the former BIOMED) 20-23 April 2020, in the first all virtual, web conference format undertaken by OSA.

View Article and Find Full Text PDF

Current skin cancer detection relies on dermatologists' visual assessments of moles directly or dermoscopically. Our goal is to show that our similarity assessment algorithm on dermoscopic images can perform as well as a dermatologist's assessment. Given one target mole and two other moles from the same patient, our model determines which mole is more similar to the target mole.

View Article and Find Full Text PDF

Recent advances in immunotherapy have highlighted a need for therapeutics that initiate immunogenic cell death in tumors to stimulate the body's immune response to cancer. This study examines whether laser-generated bubbles surrounding nanoparticles ("nanobubbles") induce an immunogenic response for cancer treatment. A single nanosecond laser pulse at 1064 nm generates micron-sized bubbles surrounding gold nanorods in the cytoplasm of breast cancer cells.

View Article and Find Full Text PDF

The use of nanomedicines to induce immunogenic cell death is a new strategy that aims to increase tumor immunogenicity and thereby prime tumors for further immunotherapies. In this study, we developed a nanoparticle formulation for combinatory chemotherapy and photothermal therapy based only on materials previously used in FDA-approved products and investigated the effect of the combinatory therapy on the growth inhibition and induction of immunogenic cell death in human MDA-MB-231 breast cancer cells. The formulation consists of ~108-nm nanoparticles made of poly(lactic acid)-b-methoxy poly(ethylene glycol) which carry doxorubicin for chemotherapy and indocyanine green for photothermal therapy.

View Article and Find Full Text PDF

A key challenge in melanoma diagnosis is the large number of unnecessary biopsies on benign nevi, which requires significant amounts of time and money. To reduce unnecessary biopsies while still accurately detecting melanoma lesions, we propose using Raman spectroscopy as a non-invasive, fast, and inexpensive method for generating a "second opinion" for lesions being considered for biopsy. We collected in vivo Raman spectral data in the clinical skin screening setting from 52 patients, including 53 pigmented lesions and 7 melanomas.

View Article and Find Full Text PDF

Spontaneous Raman micro-spectroscopy has been demonstrated great potential in delineating tumor margins; however, it is limited by slow acquisition speed. We describe a superpixel acquisition approach that can expedite acquisition between ~×100 and ×10 000, as compared to point-by-point scanning by trading off spatial resolution. We present the first demonstration of superpixel acquisition on rapid discrimination of basal cell carcinoma tumor from eight patients undergoing Mohs micrographic surgery.

View Article and Find Full Text PDF

Diffuse reflectance spectroscopy (DRS) is a noninvasive, fast, and low-cost technology with potential to assist cancer diagnosis. The goal of this study was to test the capability of our physiological model, a computational Monte Carlo lookup table inverse model, for nonmelanoma skin cancer diagnosis. We applied this model on a clinical DRS dataset to extract scattering parameters, blood volume fraction, oxygen saturation and vessel radius.

View Article and Find Full Text PDF

Collagen fibers are the primary structural elements that define many soft-tissue structure and mechanical function relationships, so that quantification of collagen organization is essential to many disciplines. Current tissue-level collagen fiber imaging techniques remain limited in their ability to quantify fiber organization at macroscopic spatial scales and multiple time points, especially in a non-contacting manner, requiring no modifications to the tissue, and in near real-time. Our group has previously developed polarized spatial frequency domain imaging (pSFDI), a reflectance imaging technique that rapidly and non-destructively quantifies planar collagen fiber orientation in superficial layers of soft tissues over large fields-of-view.

View Article and Find Full Text PDF

Achieving adequate margins during tumor margin resection is critical to minimize the recurrence rate and maximize positive patient outcomes during skin cancer surgery. Although Mohs micrographic surgery is by far the most effective method to treat nonmelanoma skin cancer, it can be limited by its inherent required infrastructure, including time-consuming and expensive on-site histopathology. Previous studies have demonstrated that Raman spectroscopy can accurately detect basal cell carcinoma (BCC) from surrounding normal tissue; however, the biophysical basis of the detection remained unclear.

View Article and Find Full Text PDF

Raman spectroscopy (RS) has demonstrated great potential for in vivo cancer screening; however, the biophysical changes that occur for specific diagnoses remain unclear. We recently developed an inverse biophysical skin cancer model to address this issue. Here, we presented the first demonstration of in vivo melanoma and nonmelanoma skin cancer (NMSC) detection based on this model.

View Article and Find Full Text PDF

Raman spectroscopy (RS) has shown great potential in noninvasive cancer screening. Statistically based algorithms, such as principal component analysis, are commonly employed to provide tissue classification; however, they are difficult to relate to the chemical and morphological basis of the spectroscopic features and underlying disease. As a result, we propose the first Raman biophysical model applied to skin cancer screening data.

View Article and Find Full Text PDF

Immune checkpoint therapy has become the first widely adopted immunotherapy for patients with late stage malignant melanoma, with potential for a wide range of cancers. While some patients can experience long term disease remission, this is limited only to a subset of patients and tumor types. The path forward to expand this therapy to more patients and tumor types is currently thought to be combinatorial treatments, the combination of immunotherapy with other treatments.

View Article and Find Full Text PDF

Laser-mediated photothermal ablation of cancer cells aided by photothermal agents is a promising strategy for localized, externally controlled cancer treatment. We report the synthesis, characterization, and in vitro evaluation of conductive polymeric nanoparticles (CPNPs) of poly(diethyl-4,4'-{[2,5-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1,4-phenylene] bis(oxy)}dibutanoate) (P1) and poly(3,4-ethylenedioxythiophene) (PEDOT) stabilized with 4-dodecylbenzenesulfonic acid and poly(4-styrenesulfonic acid--maleic acid) as photothermal ablation agents. The nanoparticles were prepared by oxidative-emulsion polymerization, yielding stable aqueous suspensions of spherical particles of <100 nm diameter as determined by dynamic light scattering and electron microscopy.

View Article and Find Full Text PDF

Fibrous structures are an integral and dynamic feature of soft biological tissues that are directly related to the tissues' condition and function. A greater understanding of mechanical tissue behavior can be gained through quantitative analyses of structure alone, as well as its integration into computational models of soft tissue function. Histology and other nonoptical techniques have traditionally dominated the field of tissue imaging, but they are limited by their invasiveness, inability to provide resolution on the micrometer scale, and dynamic information.

View Article and Find Full Text PDF