Publications by authors named "James Tsao"

Background: Previous work showed that muscle-derived stem cells (MDSCs) exposed long-term to the milieu of uncontrolled type 2 diabetes (UC-T2D) in male obese Zucker (OZ) rats, were unable to correct the associated erectile dysfunction and the underlying histopathology when implanted into the corpora cavernosa, and were also imprinted with a noxious gene global transcriptional signature (gene-GTS), suggesting that this may interfere with their use as autografts in stem cell therapy.

Aim: To ascertain the respective contributions of dyslipidemia and hyperglycemia to this MDSC damage, clarify its mechanism, and design a bioassay to identify the damaged stem cells.

Methods: Early diabetes MDSCs and late diabetes MDSCs were respectively isolated from nearly normal young OZ rats and moderately hyperglycemic and severely dyslipidemic/obese aged rats with erectile dysfunction.

View Article and Find Full Text PDF

Introduction: Muscle-derived stem cells (MDSCs) and other SCs implanted into the penile corpora cavernosa ameliorate erectile dysfunction in type 1 diabetic rat models by replenishing lost corporal smooth muscle cells (SMCs) and decreasing fibrosis. However, there are no conclusive data from models of type 2 diabetes (T2D) and obesity.

Aim: To determine whether MDSCs from obese Zucker (OZ) rats with T2D at an early stage of diabetes (early diabetic SCs isolated and cultured in low-glucose medium [ED-SCs]) counteract corporal veno-occlusive dysfunction and corporal SMC loss or lipo-fibrosis when implanted in OZ rats at a late stage of diabetes and whether MDSCs from these OZ rats with late diabetes (late diabetic SCs isolated and cultured in high-glucose medium [LD-SC]) differ from ED-SCs in gene transcriptional phenotype and repair capacity.

View Article and Find Full Text PDF

Introduction: Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD).

Methods: To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis.

Results: Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages.

View Article and Find Full Text PDF

Objective: To determine whether skeletal muscle-derived stem cells (MDSCs) convert into smooth muscle cells (SMCs) both in vitro and in vivo, and in so doing ameliorate the erectile dysfunction (ED) of aged rats, and whether endogenous stem cells are present in the rat corpora cavernosa.

Materials And Methods: MDSCs were obtained from mouse muscle, and shown by immunocytochemistry for alpha-smooth muscle actin (alpha SMA) to originate in vitro in myofibroblasts and SMCs, discriminating SMCs by calponin 1 expression. In vivo these MDSCs, labelled with 4',6-diamidino-2-phenylindole, were implanted into the corpora cavernosa of young adult (5-month old) and aged (20-month old) rats for 2 and 4 weeks.

View Article and Find Full Text PDF

Tissue fibrosis, the excessive deposition of collagen/extracellular matrix combined with the reduction of the cell compartment, defines fibroproliferative diseases, a major cause of death and a public health burden. Key cellular processes in fibrosis include the generation of myofibroblasts from progenitor cells, and the activation or switch of already differentiated cells to a fibrotic synthetic phenotype. Myostatin, a negative regulator of skeletal muscle mass, is postulated to be involved in muscle fibrosis.

View Article and Find Full Text PDF

Myostatin (Mst) is a negative regulator of skeletal muscle in humans and animals. It is moderately expressed in the heart of sheep and cattle, increasing considerably after infarction. Genetic blockade of Mst expression increases cardiomyocyte growth.

View Article and Find Full Text PDF