J Air Waste Manag Assoc
December 2020
In the 2014 National Air Toxics Assessment (NATA), the carbonyl compounds formaldehyde and acetaldehyde were identified as key cancer risk drivers and acrolein was identified as one of the three air toxics that drive most of the noncancer risk. In this assessment, averaged across the Continental United States, about 75% of ambient formaldehyde and acetaldehyde, and about 18% of acrolein, is formed secondarily. This study was conducted to estimate the potential contribution to these secondarily formed carbonyl compounds from mobile sources.
View Article and Find Full Text PDFA hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community.
View Article and Find Full Text PDFOne of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
March 2008
A large body of literature published in recent years suggests increased health risk due to exposure of people to air pollution in close proximity to roadways. As a result, there is a need to more accurately represent the spatial concentration gradients near roadways to develop mitigation strategies. In this paper, we present a practical, readily adaptable methodology, using a "bottom-up" approach to develop a detailed highway vehicle emission inventory that includes emissions for individual road links.
View Article and Find Full Text PDFAnalyses of U.S. Environmental Protection Agency (EPA) certification data, California Air Resources Board surveillance testing data, and EPA research testing data indicated that EPA's MOBILE6.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2008
Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration monitoring or modeling data. In this paper, we examine the limitations of using outdoor concentration predictions instead of modeled personal exposures for over 30 gaseous and particulate hazardous air pollutants (HAPs) in the US.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
January 2007
Modeling of inhalation exposure and risks resulting from exposure to mobile source air toxics can be used to evaluate impacts of reductions from control programs on overall risk, as well as changes in relative contributions of different source sectors to risk, changes in contributions of different pollutants to overall risk, and changes in geographic distributions of risk. Such analysis is useful in setting regulatory priorities, and informing the decision-making process. In this paper, we have conducted national-scale air quality, exposure, and risk modeling for the US in the years 2015, 2020, and 2030, using similar tools and methods as the 1999 National-Scale Air Toxics Assessment.
View Article and Find Full Text PDFProjecting a hazardous air pollutant (HAP) emission inventory to future years can provide valuable information for air quality management activities such as prediction of program successes and helping to assess future priorities. We have projected the 1999 National Emission Inventory for HAPs to numerous future years up to 2020 using the following tools and data: the Emissions Modeling System for Hazardous Air Pollutants (EMS-HAP), the National Mobile Inventory Model (NMIM), emission reduction information resulting from national standards and economic growth data. This paper discusses these projection tools, the underlying data, limitations and the results.
View Article and Find Full Text PDF