The waste receiving capacity of most municipal solid waste (MSW) landfill sites in India is exhausted, resulting in the formation of larger waste heaps. In the majority of Indian cities, these old waste heaps are prone to frequent smoldering and ignition resulting into fires. In this study, the potential risk of spontaneous ignition of landfilled waste at landfill surface was analyzed based on the physico-chemical characteristics of waste, carbon monoxide (CO) levels, landfill surface temperature (LST).
View Article and Find Full Text PDFA hybrid machine learning (ML) aided experimental approach was proposed in this study to evaluate the growth kinetics of Candida antarctica for lipase production. Different ML models were trained and optimized to predict the growth curves at various substrate concentrations. Results on comparison demonstrate the superior performance of the Gradient boosting regression (GBR) model in growth curves prediction.
View Article and Find Full Text PDFEnormous efforts have been initiated in the production of biobased fuels and value-added chemicals biorefinery owing to the scarcity of fossil resources and huge environmental synchronization. Herein, non-noble metal-based metal/mixed metal oxide supported on carbon employing a metal-organic framework as a sacrificial template is demonstrated for the first time in the selective hydrodeoxygenation (HDO) of biomass-derived furfural (FFR) to 2-methyl furan (MF). The aforementioned catalyst (referred to as Cu/CuFeO@C-) exhibited extraordinary catalytic proficiency (100% selectivity toward MF) compared with the conventional Cu/CuFeO@C- catalyst which was prepared by the wet impregnation method.
View Article and Find Full Text PDFHydrodeoxygenation (HDO) is a promising route for the upgrading of bio-oils to eco-friendly biofuel produced from lignocellulose. Herein, we report the sequential synthesis of a hybrid nanocatalyst CoP@POP, where substoichiometric CoP nanoparticles are distributed in a porous organic polymer (POP) via solid-state phosphidation of the CoO@POP nanohybrid system. We also explored the catalytic activity of the above two nanohybrids toward the HDO of vanillin, a typical compound of lignin-derived bio-oil to 2-methoxy-4-methylphenol, which is a promising future biofuel.
View Article and Find Full Text PDFBioresour Technol
February 2015
A comprehensive study on the potential of pyrolysis of activated sludge to generate substances that can be used to produce energy was evaluated for its technical and environmental viability. The products of the process viz., pyrolysis gas, pyrolysis oil and char can readily be used by the major energy consumers viz.
View Article and Find Full Text PDFAnthropogenic elemental mercury (Hg(0)) emission is a serious worldwide environmental problem due to the extreme toxicity of the heavy metal to humans, plants and wildlife. Development of an accurate and cheap microsensor based online monitoring system which can be integrated as part of Hg(0) removal and control processes in industry is still a major challenge. Here, we demonstrate that forming Au nanospike structures directly onto the electrodes of a quartz crystal microbalance (QCM) using a novel electrochemical route results in a self-regenerating, highly robust, stable, sensitive and selective Hg(0) vapor sensor.
View Article and Find Full Text PDFBetafite of composition [(Ca,U)2(Ti,Nb,Ta)2O7] was prepared via a solid state synthesis route. The synthesis was shown to be sensitive to initial reactant ratios, the atmosphere used (oxidising, neutral, reducing) and time. The optimum conditions for the synthesis of betafite were found to be heating the reactants required at 1150°C for 48 h under an inert gas atmosphere.
View Article and Find Full Text PDFSubmerged membrane bioreactor (SMBR) is a relatively advanced technology for waste water treatment that involves integrated aerobic and anaerobic biological processes with membrane filtration. In the present investigation, hydrophobic polyvinylidene fluoride (PVDF) and hydrophilic polyacrylonitrile (PAN) hollow fiber (HF) membranes were tested in an indigenously fabricated SMBR for dairy effluent treatment under aerobic conditions using mixed microbial consortia. Effect of operating parameters such as suction pressure, degree of aeration and trans-membrane pressure (TMP) on membrane performance in terms of flux, rejection of turbidity, BOD and COD besides fouling characteristics was investigated.
View Article and Find Full Text PDFTo understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz.
View Article and Find Full Text PDFAdvantages of confining the gold nanostructures formation within the mesoporous silica pore walls during its silica condensation and consequent improvement in the textural properties such as specific surface area, pore volume, pore diameter have been demonstrated, while retaining gold nanostructures within the silica walls. This has been achieved by tryptophan mediated confinement of gold nanoparticles formation within the condensing silica framework, to obtain Au-SBA-15 (SSA 1247 m(2)/g, V(t)~1.37 cm(3)/g) and Au-MCM-41 (SSA 1287 m(2)/g, V(t)~1.
View Article and Find Full Text PDFPyrolysis of kitchen based vegetable waste (KVW) was studied in a designed packed bed reactor. The effect of process parameters like temperature, time and catalyst on bio-gas yield and its composition was studied. The total bio-gas yield was found to be maximum with non-catalysed operation (260ml/g) at 1073K (180min).
View Article and Find Full Text PDFCatalytic wet oxidation (CWO) and wet peroxide oxidation (WPO) of stripped sour water (SSW) from an oil shale refinery was investigated. Greater than 70% total organic carbon (TOC) removal from SSW was achieved using Cu(NO(3))(2) catalysed WO under the following conditions using a glass lined reaction vessel: 200 degrees C, pO(2)=0.5MPa, 3h, [Cu(NO(3))(2)]=67mmol/L.
View Article and Find Full Text PDFDigestion condensate is formed as a by-product of the alumina refinery digestion process. The solution exhibits a high pH and is chemically reducing, containing many volatile species such as water, volatile organics, ammonia, and mercury. Because digestion condensate is chemically unique, an innovative approach was required to investigate mercury removal.
View Article and Find Full Text PDF