Publications by authors named "James T Taylor"

Fungal spores, germlings, and mycelia adhere to substrates, including host tissues. The adhesive forces depend on the substrate and on the adhesins, the fungal cell surface proteins. Attachment is often a prerequisite for the invasion of the host, hence its importance.

View Article and Find Full Text PDF

is a well-known mycoparasitic fungal symbiont that is valued for its biocontrol capabilities. initiates a symbiotic relationship with a plant host through the colonization of its roots. To achieve colonization, the fungus must communicate with the host and evade its innate defenses.

View Article and Find Full Text PDF

The anticancer antibiotic heptelidic acid is a sesquiterpene lactone produced by the beneficial plant fungus Trichoderma virens. This species has been separated into two strains, referred to as P and Q, based on its biosynthesis of secondary metabolites; notably, only P-strains were reported to produce heptelidic acid. While characterizing a Q-strain of T.

View Article and Find Full Text PDF

Fungal siderophores are known to be involved in iron acquisition and storage, as well as pathogenicity of mammals and plants. As avirulent plant symbionts, Trichoderma spp. colonize roots and induce resistance responses both locally and systemically.

View Article and Find Full Text PDF

Chemical warfare nerve agents (CWNA) inhibit acetylcholinesterase and are among the most lethal chemicals known to man. Children are predicted to be vulnerable to CWNA exposure because of their smaller body masses, higher ventilation rates and immature central nervous systems. While a handful of studies on the effects of CWNA in younger animals have been published, exposure routes relevant to battlefield or terrorist situations (i.

View Article and Find Full Text PDF

Improving the quality of physiologic data collected from research animals is most easily accomplished by collecting as much information as possible from a single subject, thereby reducing animal use and error associated with satellite groups. We investigated the feasibility of using a large-animal implantable telemetry device in New Zealand white rabbits (n = 6). The first task was to develop an implantation technique that yielded calibrated tidal volume (Vt) measurements that were within 10% of those obtained simultaneously from a pneumotachograph, a low-noise electrocardiogram, and stable blood pressure.

View Article and Find Full Text PDF

The present study investigated the effect of the organophosphate, dichlorvos (DDVP), on ocular function and cholinesterase activity in guinea pigs, using a single-animal-head-only vapor exposure system. All animals exhibited signs of mild organophosphate poisoning (e.g.

View Article and Find Full Text PDF

Regulation of intracellular calcium is an important signaling mechanism for cell proliferation in both normal and cancerous cells. In normal epithelial cells, free calcium concentration is essential for cells to enter and accomplish the S phase and the M phase of the cell cycle. In contrast, cancerous cells can pass these phases of the cell cycle with much lower cytoplasmic free calcium concentrations, indicating an alternative mechanism has developed for fulfilling the intracellular calcium requirement for an increased rate of DNA synthesis and mitosis of fast replicating cancerous cells.

View Article and Find Full Text PDF

The present study was undertaken to investigate the miotic potency of soman vapor in the rat, as well as gender differences in the miotic response to soman vapor that have been reported previously for other nerve agents. The results of the present study demonstrate that the miotic potency of soman vapor is significantly less than that of other nerve agents, and that female rats are 2.5-3.

View Article and Find Full Text PDF

We have measured the expression of T-type Ca2+ channel mRNA in breast cancer cell lines (MCF-7 (ERalpha+) using Western blot and quantitative real-time PCR (Q-RT-PCR). These results revealed that the MCF-7 cells express both alpha1G and alpha1H isoforms of T-type Ca2+ channels. In order to further clarify the role of T-type Ca2+ channels in proliferation, we tested the effects of a selective T-type Ca2+ channel inhibitor NNC-55-0396 on cellular proliferation.

View Article and Find Full Text PDF

Using a modified noninvasive volume-displacement plethysmography system, we investigated the effects of inhaled dichlorvos (2,2-dimethyl-dichlorovinyl phosphate, or DDVP) vapor on the respiratory mechanics and blood cholinesterase activity of guinea pigs. Data revealed significant dose-dependent changes in several pulmonary parameters. Animals exposed to a DDVP concentration of 35 mg/m(3) did not show any significant changes in frequency, tidal volume, or minute ventilation.

View Article and Find Full Text PDF

A sensitive method for determining exposure to the chemical warfare agent VX is described in which the biomarker ethyl methylphosphonofluoridate (VX-G) is measured in red blood cells (RBCs) following treatment with fluoride ion using isotope-dilution gas chromatography-tandem mass spectrometry. The analyte was isolated via solid-phase extraction and detected using ammonia chemical ionization in the multiple reaction monitoring mode. A good linear relationship was obtained in the quantitative concentration range of 4 ng/mL to 1000 ng/mL with an absolute detection limit of < 1 pg on column.

View Article and Find Full Text PDF

The lack of data in the open literature on human exposure to the nerve agent O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) gives a special relevance to the data presented in this study in which we report the quantification of VX-butyrylcholinesterase adduct from a relatively low-level accidental human exposure. The samples were analyzed by gas chromatography-high resolution mass spectrometry using the fluoride ion regeneration method for the quantification of multiple nerve agents including VX. Six human plasma samples from the same individual were collected after the patient had been treated once with oxime immediately after exhibiting signs of exposure.

View Article and Find Full Text PDF

NNC 55-0396 is a structural analog of mibefradil (Ro 40-5967) that inhibits both T-type and high-voltage-activated (HVA) Ca2+ channels with a higher selectivity for T-type Ca2+ channels. The inhibitory effect of mibefradil on HVA Ca2+ channels can be attributed to a hydrolyzed metabolite of the drug: the methoxy acetate side chain of mibefradil is removed by intracellular enzymes, thus it forms (1S,2S)-2-(2-(N-[(3-benzoimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl hydroxy dihydrochloride (dm-mibefradil), which causes potent inhibition of HVA Ca2+ currents. By replacing the methoxy acetate chain of mibefradil with cyclopropanecarboxylate, a more stable analog was developed (NNC 55-0396).

View Article and Find Full Text PDF

High-voltage-activated (HVA) calcium channels are known to be the primary source of calcium for glucose-stimulated insulin secretion. However, few studies have investigated how these channels can be regulated by chronically elevated levels of glucose. In the present study, we determined the level of expression of the four major HVA calcium channels (N-type, P/Q-type, L(C)-type, and L(D)-type) in rat pancreatic beta-cells.

View Article and Find Full Text PDF

Infants develop hypertrophic cardiomyopathy in approximately 30% of diabetic pregnancies. We have characterized the effects of glucose on voltage-gated T-type Ca2+ channels and intracellular free calcium concentration, [Ca2+]i in neonatal rat cardiomyocytes. We found that T-type Ca2+ channel current density increased significantly in primary culture neonatal cardiac myocytes that were treated with 25 mM glucose for 48 h when compared with those that were treated with 5 mM glucose.

View Article and Find Full Text PDF

Stimulation of vascular endothelial muscarinic receptors by acetylcholine (ACh) leads to the formation of an endothelium-derived relaxing factor (EDRF), which is generally accepted to be nitric oxide (NO). Recent evidence, however, suggests that NO may be only one of several EDRFs mediating the vasodilator response to ACh. Since this NO-independent vasodilator response to ACh has been hypothesized to be dependent upon K(+) channel activation, the current study was undertaken to investigate the role of K(+) channels in mediating the hindlimb vasodilator responses to ACh in vivo.

View Article and Find Full Text PDF

Mibefradil is a Ca2+ channel antagonist that inhibits both T-type and high-voltage-activated Ca2+ channels. We previously showed that block of high-voltage-activated channels by mibefradil occurs through the production of an active metabolite by intracellular hydrolysis. In the present study, we modified the structure of mibefradil to develop a nonhydrolyzable analog, (1S, 2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride (NNC 55-0396), that exerts a selective inhibitory effect on T-type channels.

View Article and Find Full Text PDF

Chronic exposure of pancreatic beta-cells to high concentrations of glucose impairs the insulin secretory response to further glucose stimulation. This phenomenon is referred to as glucose desensitization. It has been shown that glucose desensitization is associated with abnormal elevation of beta-cell basal intracellular free Ca2+ concentration ([Ca2+]i).

View Article and Find Full Text PDF

In the present study, we demonstrate that lung microvascular endothelial cells express a Cav3.1 (alpha1G) T-type voltage-gated Ca2+ channel, whereas lung macrovascular endothelial cells do not express voltage-gated Ca2+ channels. Voltage-dependent activation indicates that the Cav3.

View Article and Find Full Text PDF