Publications by authors named "James T Park"

Successful pathogens have evolved to evade innate immune recognition of microbial molecules by pattern recognition receptors (PRR), which control microbial growth in host tissues. Upon Legionella pneumophila infection of macrophages, the cytosolic PRR Nod1 recognizes anhydro-disaccharide-tetrapeptide (anhDSTP) generated by soluble lytic transglycosylase (SltL), the predominant bacterial peptidoglycan degrading enzyme, to activate NF-κB-dependent innate immune responses. We show that L.

View Article and Find Full Text PDF

Peptidoglycan (PG) recycling allows Escherichia coli to reuse the massive amounts of sacculus components that are released during elongation. Goodell and Schwarz, in 1985, labeled E. coli cells with 3H-diaminopimelic acid (DAP) and chased.

View Article and Find Full Text PDF

The phenomenon of peptidoglycan recycling is reviewed. Gram-negative bacteria such as Escherichia coli break down and reuse over 60% of the peptidoglycan of their side wall each generation. Recycling of newly made peptidoglycan during septum synthesis occurs at an even faster rate.

View Article and Find Full Text PDF

We have found a striking difference between the modes of action of amdinocillin (mecillinam) and compound A22, both of which inhibit cell elongation. This was made possible by employment of a new method using an Escherichia coli peptidoglycan (PG)-recycling mutant, lacking ampD, to analyze PG degradation during cell elongation and septation. Using this method, we have found that A22, which is known to prevent MreB function, strongly inhibited PG synthesis during elongation.

View Article and Find Full Text PDF

From its amino acid sequence homology with AmpD, we recognized YbjR, now renamed AmiD, as a possible second 1,6-anhydro-N-acetylmuramic acid (anhMurNAc)-l-alanine amidase in Escherichia coli. We have now confirmed that AmiD is an anhMurNAc-l-Ala amidase and demonstrated that AmpD and AmiD are the only enzymes present in E. coli that are able to cleave the anhMurNAc-l-Ala bond.

View Article and Find Full Text PDF

MurQ is an N-acetylmuramic acid-phosphate (MurNAc-P) etherase that converts MurNAc-P to N-acetylglucosamine-phosphate and is essential for growth on MurNAc as the sole source of carbon (T. Jaegar, M. Arsic, and C.

View Article and Find Full Text PDF

Escherichia coli breaks down over 60% of the murein of its side wall and reuses the component amino acids to synthesize about 25% of the cell wall for the next generation. The amino sugars of the murein are also efficiently recycled. Here we show that the 1,6-anhydro-N-acetylmuramic acid (anhMurNAc) is returned to the biosynthetic pathway by conversion to N-acetylglucosamine-phosphate (GlcNAc-P).

View Article and Find Full Text PDF

beta-Lactam resistance in enteric bacteria is frequently caused by mutations in ampD encoding a cytosolic N-acetylmuramyl- l-alanine amidase. Such mutants are blocked in murein (peptidoglycan) recycling and accumulate cytoplasmic muropeptides that interact with the transcriptional activator ampR, which de-represses beta-lactamase expression. Salmonella enterica serovar Typhimurium, an extensively studied enteric pathogen, was used to show that mutations in ampD decreased the ability of S.

View Article and Find Full Text PDF

N-acetyl-D-glucosamine (GlcNAc) is a major component of bacterial cell wall murein and the lipopolysaccharide of the outer membrane. During growth, over 60% of the murein of the side wall is degraded, and the major products, GlcNAc-anhydro-N-acetylmuramyl peptides, are efficiently imported into the cytoplasm and cleaved to release GlcNAc, anhydro-N-acetylmuramic acid, murein tripeptide (L-Ala-D-Glu-meso-diaminopimelic acid), and D-alanine. Like murein tripeptide, GlcNAc is readily recycled, and this process was thought to involve phosphorylation, since GlcNAc-6-phosphate (GlcNAc-6-P) is efficiently used to synthesize murein or lipopolysaccharide or can be metabolized by glycolysis.

View Article and Find Full Text PDF

MpaA amidase was identified in Escherichia coli by its amino acid sequence homology with the ENP1 endopeptidase from Bacillus sphaericus. The enzymatic activity of MpaA, i.e.

View Article and Find Full Text PDF

AmpG was originally identified as a gene required for induction of beta-lactamase. Subsequently, we found AmpG to be a permease required for recycling of murein tripeptide and uptake of anhydro-muropeptides. We have now studied the specificity of the AmpG permease.

View Article and Find Full Text PDF

PM61 is a chain-forming envC strain of Escherichia coli with a leaky outer membrane. It was found to have an oversized penicillin-binding protein 3, which was the result of an IS4 insertion in the prc gene. The other properties of PM61 were caused by the envC mutation.

View Article and Find Full Text PDF

Certain beta-lactam antibiotics induce the chromosomal ampC beta-lactamase of many gram-negative bacteria. The natural inducer, though not yet unequivocally identified, is a cell wall breakdown product which enters the cell via the AmpG permease component of the murein recycling pathway. Surprisingly, it has been reported that beta-lactamase is not induced by cefoxitin in the absence of FtsZ, which is required for cell division, or in the absence of penicillin-binding protein 2 (PBP2), which is required for cell elongation.

View Article and Find Full Text PDF