Publications by authors named "James T McLaughlin"

Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss.

View Article and Find Full Text PDF

Use of topical antihistamines in the treatment of allergic conjunctivitis has evolved over the past several decades as our knowledge of the nature of the underlying disease has progressed. Formulations for the eye typically employ H(1)-receptor antagonists with a dual action, both directly as competitors for histamine receptor occupancy and as mast cell-stabilizing agents. Many of these compounds also display activity against late-phase allergic symptoms.

View Article and Find Full Text PDF

Despite decades of different treatment algorithms, the management of congenital adrenal hyperplasia (CAH) remains clinically challenging. This is due to the inherent difficulty of suppressing adrenal androgen production using near physiological dosing of glucocorticoids (GC). As a result, alternating cycles of androgen versus GC excess can occur and may lead to short stature, obesity, virilization, and alterations in puberty.

View Article and Find Full Text PDF

Background: CAH, most often due to a molecular defect in the 21-OH enzyme, results in inadequate cortisol production and subsequent life-long GC replacement.

Aims: To heighten awareness for risk of GIO in children with CAH including (1) ongoing assessment of GC dosing, (2) screening for bone health, and (3) prophylactic measures/early intervention once GIO is identified.

Patient: 23 year-old male with 21OHD CAH referred for osteopenia.

View Article and Find Full Text PDF

Changes in intracellular calcium are necessary for the successful progression of mitosis in many cells. Both elevation and reduction in intracellular calcium can disrupt mitosis by mechanisms that remain ill defined. In this study we explore the role of transmembrane voltage-gated calcium channels (CaV channels) as regulators of mitosis in the mouse corticotroph cell line (AtT-20).

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors are implicated in several neuropsychiatric disorders, including nicotine addiction, Alzheimer's, schizophrenia, and depression. Therefore, they represent a critical molecular target for drug development and targeted therapeutic intervention. Understanding the molecular mechanisms by which allosteric modulators enhance activation of these receptors is crucial to the development of new drugs.

View Article and Find Full Text PDF

Allosteric modulation of membrane receptors is a widespread mechanism by which endogenous and exogenous agents regulate receptor function. For example, several members of the nicotinic receptor family are modulated by physiological concentrations of extracellular calcium ions. In this paper, we examined conformational changes underlying this modulation and compare these with changes evoked by ACh.

View Article and Find Full Text PDF

Cys-loop ligand-gated ion channels assemble as pentameric proteins, and each monomer contributes two structural elements: an extracellular ligand-binding domain (LBD) and a transmembrane ion channel domain. Models of receptor activation include rotational movements of subunits leading to opening of the ion channel. We tested this idea using substituted cysteine accessibility to track conformational changes in the inner beta sheet of the LBD.

View Article and Find Full Text PDF

alpha-7 Nicotinic acetylcholine receptors (AChRs) exhibit a positive modulation by divalent cations similar to that observed in other AChRs. In the chick alpha7 AChR, this modulation involves a conserved glutamate in loop 9 (Glu172) that undergoes agonist-dependent movements during activation. From these observations, we hypothesized that movements of the nearby beta-sheet formed by the beta7, beta9, and beta10 strands may be involved in agonist activation and/or divalent modulation.

View Article and Find Full Text PDF

The molecular mechanisms that couple agonist binding to the gating of Cys-loop ionotropic receptors are not well understood. The crystal structure of the acetylcholine (ACh) binding protein has provided insights into the structure of the extracellular domain of nicotinic receptors and a framework for testing mechanisms of activation. Key ligand binding residues are located at the C-terminal end of the beta9 strand.

View Article and Find Full Text PDF

Neuronal alpha7 nicotinic ACh receptors (nAChRs) are permeable to and modulated by Ca2+, Ba2+, and Sr2+. These permeant divalent cations interact with slowly desensitizing L247T alpha7 nAChRs to increase the potency and maximal efficacy of ACh, increase the efficacy of dihydro-beta-erythroidine (DHbetaE), and increase agonist-independent activity. Mutation of glutamate 172 (E172) to glutamine or cysteine eliminated these effects of permeant divalent cations.

View Article and Find Full Text PDF