Publications by authors named "James T MacGregor"

Hydroxyurea is approved for treating children and adults with sickle cell anemia (SCA). Despite its proven efficacy, concerns remain about its mutagenic and carcinogenic potential that hamper its widespread use. Cell culture- and animal-based investigations indicate that hydroxyurea's genotoxic effects are due to indirect clastogenicity in select cell types when high dose and time thresholds are exceeded (reviewed by Ware & Dertinger, 2021).

View Article and Find Full Text PDF

Assessment of genotoxicity is a critical component of mode of action (MOA) analysis and carcinogen risk assessment due to its influence on quantitative risk extrapolation approaches. To date, clear guidance and expert consensus on the determination of a mutagenic MOA remains elusive, resulting in different estimates of carcinogenic risk for the same chemical among different stakeholders. Oral toxicity criteria for hexavalent chromium [Cr(VI)], for example, differ by orders of magnitude due largely to the interpretation of genotoxicity data.

View Article and Find Full Text PDF

Dr. Bruce Ames turned 92 on December 16, 2020. He considers his most recent work linking adequate consumption of 30 known vitamins and minerals with successful aging to be his most important contribution.

View Article and Find Full Text PDF

The etiology of distal site cancers in inflammatory bowel disease (IBD) is not well understood and requires further study. We investigated whether pediatric IBD patients' blood cells exhibit elevated levels of genomic damage by measuring the frequency of mutant phenotype (CD59-/CD55-) reticulocytes (MUT RET) as a reporter of PIG-A mutation, and the frequency of micronucleated reticulocytes (MN-RET) as an indicator of chromosomal damage. IBD patients (n = 18 new-onset disease, 46 established disease) were compared to age-matched controls (constipation or irritable bowel syndrome patients from the same clinic, n = 30) and young healthy adults age 19-24 (n = 25).

View Article and Find Full Text PDF

We previously described flow cytometry-based methods for scoring the incidence of micronucleated reticulocytes (MN-RET) and PIG-A mutant phenotype reticulocytes (MUT RET) in rodent and human blood samples. The current report describes important methodological improvements for human blood analyses, including immunomagnetic enrichment of CD71-positive reticulocytes prior to MN-RET scoring, and procedures for storing frozen blood for later PIG-A analysis. Technical replicate variability in MN-RET and MUT RET frequencies based on blood specimens from 14 subjects, intra-subject variability based on serial blood draws from 6 subjects, and inter-subject variation based on up to 344 subjects age 0 to 73 years were quantified.

View Article and Find Full Text PDF

Regulatory guidance documents stress the value of assessing the most appropriate endpoints in multiple tissues when evaluating the in vivo genotoxic potential of chemicals. However, conducting several independent studies to evaluate multiple endpoints and/or tissue compartments is resource intensive. Furthermore, when dependent on visual detection, conventional approaches for scoring genotoxicity endpoints can be slow, tedious, and less objective than the ideal.

View Article and Find Full Text PDF

The Pig-a assay is being used in regulatory studies to evaluate the potential of agents to induce somatic cell gene mutations and an OECD test guideline is under development. A working group involved with establishing the guideline recently noted that representative aneugenic agents had not been evaluated, and to help fill this data gap Pig-a mutant phenotype and micronucleated reticulocyte frequencies were measured in an integrated study design to assess the mutagenic and cytogenetic damage responses to vinblastine sulfate exposure. Male Sprague Dawley rats were treated for twenty-eight consecutive days with vinblastine dose levels from 0.

View Article and Find Full Text PDF

This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values.

View Article and Find Full Text PDF

This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose-response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species.

View Article and Find Full Text PDF

This report summarizes the discussion, conclusions, and points of consensus of the IWGT Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (QWG) based on a meeting in Foz do Iguaçu, Brazil October 31-November 2, 2013. Topics addressed included (1) the need for quantitative dose-response analysis, (2) methods to analyze exposure-response relationships & derive point of departure (PoD) metrics, (3) points of departure (PoD) and mechanistic threshold considerations, (4) approaches to define exposure-related risks, (5) empirical relationships between genetic damage (mutation) and cancer, and (6) extrapolations across test systems and species. This report discusses the first three of these topics and a companion report discusses the latter three.

View Article and Find Full Text PDF

Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, groups of five male and female Sprague Dawley rats were exposed to the mutagens 1,3-propane sultone (80mg/kg/day), ethyl carbamate (600mg/kg/day), or thiotepa (7.5mg/kg/day) for three consecutive days (study days 1-3).

View Article and Find Full Text PDF

Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation.

View Article and Find Full Text PDF

Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3).

View Article and Find Full Text PDF

This laboratory has previously described a method for scoring the incidence of rodent blood Pig-a mutant phenotype erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends this approach to human blood. The frequencies of CD59- and CD55-negative reticulocytes (RET(CD59-/CD55-)) and erythrocytes (RBC(CD59-/CD55-)) serve as phenotypic reporters of PIG-A gene mutation.

View Article and Find Full Text PDF

Cisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.

View Article and Find Full Text PDF

Diethylnitrosamine (DEN) is a genotoxic carcinogen, but in vivo DNA-damaging activities are not usually evident in hematopoietic cells because the short-lived active metabolite is formed mainly in the liver. DEN therefore represented an interesting case for evaluating the performance characteristics of blood-based endpoints of genotoxicity that have been automated using flow cytometric analysis-frequency of micronucleated reticulocytes and Pig-a mutant phenotype reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ). Male Sprague Dawley rats were treated for 28 consecutive days with DEN at levels up to 12.

View Article and Find Full Text PDF

To evaluate whether blood-based genotoxicity endpoints can provide temporal and dose-response data within the low-dose carcinogenic range that could contribute to carcinogenic mode of action (MoA) assessments, we evaluated the sensitivity of flow cytometry-based micronucleus and Pig-a gene mutation assays at and below tumorigenic dose rate 50 (TD50) levels. The incidence of micronucleated reticulocytes (MN-RET) was used to evaluate chromosomal damage, and the frequency of CD59-negative reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ) served as phenotypic reporters of mutation at the X-linked Pig-a gene. Several leukemogenic agents with a presumed genotoxic MoA were studied.

View Article and Find Full Text PDF

In late 2012, the members of the Environmental Mutagen Society voted to change its name to the Environmental Mutagenesis and Genomics Society. Here, we describe the thought process that led to adoption of the new name, which both respects the rich history of a Society founded in 1969 and reflects the many advances in our understanding of the nature and breadth of gene-environment interactions during the intervening 43 years.

View Article and Find Full Text PDF

Procarbazine is a genotoxic carcinogen whose DNA-damaging activities are not reliably detected in vitro. We evaluated the in vivo genotoxic effects of procarbazine on hematopoietic cells of male CD-1 mice using a multi-endpoint study design that scored micronucleated reticulocyte (MN-RET) frequency and gene mutation at the Pig-a locus. CD-1 mice were treated for 3 days with procarbazine, up to 150 mg/kg/day.

View Article and Find Full Text PDF

The ability to effectively monitor gene mutation and micronucleated reticulocyte (MN-RET) frequency in short-term and repeated dosing schedules was investigated using the recently developed flow cytometric Pig-a mutation assay and flow cytometric micronucleus analysis. Eight reference genotoxicants and three presumed nongenotoxic compounds were studied: chlorambucil, melphalan, thiotepa, cyclophosphamide, azathioprine, 2-acetylaminofluorene, hydroxyurea, methyl methanesulfonate, o-anthranilic acid, sulfisoxazole, and sodium chloride. These experiments extend previously published results with seven other chemicals.

View Article and Find Full Text PDF

Combining multiple genetic toxicology endpoints into a single in vivo study, and/or integrating one or more genotoxicity assays into general toxicology studies, is attractive because it reduces animal use and enables comprehensive comparative analysis using toxicity, metabolism, and pharmacokinetic information from the same animal. This laboratory has developed flow cytometric scoring techniques for monitoring two blood-based genotoxicity endpoints-micronucleated reticulocyte frequency and gene mutation at the Pig-a locus-thereby making combination and integration studies practical. The ability to effectively monitor these endpoints in short-term and repeated dosing schedules was investigated with the carcinogen/noncarcinogen pair benzo(a)pyrene (BP) and pyrene (Pyr).

View Article and Find Full Text PDF

An international collaborative trial was established to systematically investigate the merits and limitations of a rat in vivo Pig-a gene mutation assay. The product of this gene is essential for anchoring CD59 to the plasma membrane, and mutations in this gene are identified by flow cytometric quantification of circulating erythrocytes without cell surface CD59 expression. Initial interlaboratory data from rats treated with several potent mutagens have been informative, but the time required for those flow cytometric analyses (∼20 min per sample) limited the number of cells that could be interrogated for the mutant phenotype.

View Article and Find Full Text PDF

A collaborative international trial was conducted to evaluate the reproducibility and transferability of an in vivo mutation assay based on the enumeration of CD59-negative rat erythrocytes, a phenotype that is indicative of Pig-a gene mutation. Fourteen laboratories participated in this study, where anti-CD59-PE, SYTO 13 dye, and flow cytometry were used to determine the frequency of CD59-negative erythrocytes (RBC(CD59-)) and CD59-negative reticulocytes (RET(CD59-)). To provide samples with a range of mutant phenotype cell frequencies, male rats were exposed to N-ethyl-N-nitrosourea (ENU) via oral gavage for three consecutive days (Days 1-3).

View Article and Find Full Text PDF

This report updates previous reviews that were conducted as part of the third and fourth International Workshops on Genetic Toxicology Testing of micronucleus (MN) assays in rodent tissues other than bone marrow. Tissues discussed here are liver, lung, skin, colon, spleen, testes and foetal/neonatal tissues with transplacental exposure. Previous reviews have been updated to include literature published after 2000.

View Article and Find Full Text PDF

The relative simplicity of the micronucleated erythrocyte endpoint has made it amenable to automated scoring approaches. Flow cytometry is one such scoring platform that has been employed successfully. This review describes the evolution and properties of flow cytometry-based scoring of micronucleated erythrocytes.

View Article and Find Full Text PDF