Metab Eng Commun
December 2021
Lichen-forming fungi produce a variety of secondary metabolites including bioactive polyketides. Advances in DNA and RNA sequencing have led to a growing database of new lichen gene clusters encoding polyketide synthases (PKS) and associated ancillary activities. Definitive assignment of a PKS gene to a metabolic product has been challenging in the lichen field due to a lack of established gene knockout or heterologous gene expression systems.
View Article and Find Full Text PDFHighly reducing iterative polyketide synthases are large, multifunctional enzymes that make important metabolites in fungi, such as lovastatin, a cholesterol-lowering drug from Aspergillus terreus. We report efficient expression of the lovastatin nonaketide synthase (LovB) from an engineered strain of Saccharomyces cerevisiae, as well as complete reconstitution of its catalytic function in the presence and absence of cofactors (the reduced form of nicotinamide adenine dinucleotide phosphate and S-adenosylmethionine) and its partner enzyme, the enoyl reductase LovC. Our results demonstrate that LovB retains correct intermediates until completion of synthesis of dihydromonacolin L, but off-loads incorrectly processed compounds as pyrones or hydrolytic products.
View Article and Find Full Text PDFA sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain.
View Article and Find Full Text PDFGene clusters for biosynthesis of the fungal polyketides hypothemycin and radicicol from Hypomyces subiculosus and Pochonia chlamydosporia, respectively, were sequenced. Both clusters encode a reducing polyketide synthase (PKS) and a nonreducing PKS like those in the zearalenone cluster of Gibberella zeae, plus enzymes with putative post-PKS functions. Introduction of an O-methyltransferase (OMT) knockout construct into H.
View Article and Find Full Text PDFPolyketides are a diverse group of natural products with significance in human and veterinary medicine. Because polyketides are structurally complex molecules and fermentation is the most commercially viable route of production, a generic heterologous host system for high-level polyketide production is desirable. Saccharomyces cerevisiae has been shown to be an excellent production host for a simple polyketide, yielding 1.
View Article and Find Full Text PDFA generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors.
View Article and Find Full Text PDFl-Aspartate-alpha-decarboxylase (PanD) catalyzes the decarboxylation of aspartate to produce beta-alanine, a precursor of Coenzyme A (CoA). The pyruvoyl-dependent enzyme from Escherichia coli is activated by self-cleavage at serine 25 to generate a 102-residue alpha subunit with the pyruvoyl group at its N terminus and a 24-residue beta subunit with a hydroxy at its C terminus. A mutant form of the panD gene from E.
View Article and Find Full Text PDFThe erythromycin precursor polyketide 6-deoxyerythronolide B (6-dEB) is produced from one propionyl-CoA starter unit and six (2S)-methylmalonyl-CoA extender units. In vitro studies have previously demonstrated that the loading module of 6-deoxyerythronolide B synthase (DEBS) exhibits relaxed substrate specificity and is able to accept butyryl-CoA, leading to the production of polyketides with butyrate starter units. We have shown that we can produce butyryl-CoA at levels of up to 50% of the total CoA pool in Escherichia coli cells that overexpress the acetoacetyl-CoA:acetyl-CoA transferase, AtoAD (EC 2.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2003
Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit ( 2S)-methylmalonyl-CoA via three independent pathways.
View Article and Find Full Text PDFModular polyketide synthases (PKS) are large multifunctional enzymes that synthesize complex polyketides, a therapeutically important class of natural products. The linear order and composition of catalytic sites that comprise the PKS represent a "code" that determines the identity of the polyketide product. By re-programming the PKS through genetic engineering, it is possible to alter the code in a predictable manner to create specific structural modifications of polyketides and to produce new libraries of these natural products.
View Article and Find Full Text PDFA barrier to heterologous production of complex polyketides in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common extender substrate for the biosynthesis of complex polyketides by modular polyketide synthases. One biosynthetic route to (2S)-methylmalonyl-CoA involves the sequential actions of two enzymes, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase, which convert succinyl-CoA to (2R)- and then to (2S)-methylmalonyl-CoA. As reported [McKie, N.
View Article and Find Full Text PDFAn Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P.
View Article and Find Full Text PDF