Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis.
View Article and Find Full Text PDF3-Hydroxyquinolin-2(1H)-one (2) was discovered by high throughput screening in a functional assay to be a potent inhibitor of human DAAO, and its binding affinity was confirmed in a Biacore assay. Cocrystallization of 2 with the human DAAO enzyme defined the binding site and guided the design of new analogues. The SAR, pharmacokinetics, brain exposure, and effects on cerebellum D-serine are described.
View Article and Find Full Text PDFExplorations in the pyrimidinetrione series of MMP-13 inhibitors led to the discovery of a series of spiro-fused compounds that are potent and selective inhibitors of MMP-13. While other spiro-fused motifs are hydrolytically unstable, presumably due to electronic destabilization of the pyrimidinetrione ring, the spiropyrrolidine series does not share this liability. Greater than 100-fold selectivity versus other MMP family members was achieved by incorporation of an extended aryl-heteroaryl P1'group.
View Article and Find Full Text PDFUsing SAR from two related series of pyrimidinetrione-based inhibitors, compounds with potent MMP-13 inhibition and >100-fold selectivity against other MMPs have been identified. Despite high molecular weights, clogPs, and polar surface areas, the compounds are generally well absorbed and have excellent pharmacokinetic (PK) properties when dosed as sodium salts. In a rat fibrosis model, a compound from the series displayed no fibrosis at exposures many fold greater than its MMP-13 IC50.
View Article and Find Full Text PDFThrough the use of computational modeling, a series of pyrimidinetrione-based inhibitors of MMP-13 was designed based on a lead inhibitor identified through file screening. Incorporation of a biaryl ether moiety at the C-5 position of the pyrimidinetrione ring resulted in a dramatic enhancement of MMP-13 potency. Protein crystallography revealed that this moiety binds in the S(1)(') pocket of the enzyme.
View Article and Find Full Text PDF