Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products.
View Article and Find Full Text PDFMolecular causes of aging and longevity interventions have witnessed an upsurge in the last decade. The resurgent interests in the application of small molecules as potential geroprotectors and/or pharmacogenomics point to nicotinamide adenine dinucleotide (NAD) and its precursors, nicotinamide riboside, nicotinamide mononucleotide, nicotinamide, and nicotinic acid as potentially intriguing molecules. Upon supplementation, these compounds have shown to ameliorate aging related conditions and possibly prevent death in model organisms.
View Article and Find Full Text PDFThe proper balance of gene expression is essential for cellular health, organismal development, and maintaining homeostasis. In response to complex internal and external signals, the cell needs to modulate gene expression to maintain proteostasis and establish cellular identity within its niche. On a genome level, single-celled prokaryotic microbes display clustering of co-expressed genes that are regulated as a polycistronic RNA.
View Article and Find Full Text PDFComput Struct Biotechnol J
October 2020
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell.
View Article and Find Full Text PDFAging is the time dependent deterioration of an organism's normal biological processes that increases the probability of death. Many genetic factors contribute to alterations in the normal aging process. These factors intersect in complex ways, as evidenced by the wealth of documented links identified and conserved in many organisms.
View Article and Find Full Text PDFMicroorganisms
February 2020
The growing global population and developing world has put a strain on non-renewable natural resources, such as fuels. The shift to renewable sources will, thus, help meet demands, often through the modification of existing biosynthetic pathways or the introduction of novel pathways into non-native species. There are several useful biosynthetic pathways endogenous to organisms that are not conducive for the scale-up necessary for industrial use.
View Article and Find Full Text PDFBalancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region.
View Article and Find Full Text PDFIt is essential that cells orchestrate gene expression for the specific niche that they occupy, and this often requires coordination of the expression of large sets of genes. There are multiple regulatory systems that exist for modulation of gene expression, including the adjacent-gene coregulation of the rRNA and ribosome biogenesis and ribosomal protein families. Both gene families exhibit a nonrandom genomic distribution, often clustered directly adjacent to another member of the same family, which results in a tighter transcriptional coordination among adjacent paired genes than that of the unpaired genes within each regulon and can result in a shared promoter that coordinates expression of the pairs.
View Article and Find Full Text PDFThe relative positions that genes occupy on their respective chromosomes can play a critical role in determining how they are regulated at the transcriptional level. For example, a significant fraction of the genes from a variety of coregulated gene sets, including the ribosomal protein (RP) and the rRNA and ribosome biogenesis (RRB) regulons, exist as immediate, adjacent gene pairs. These gene pairs occur in all possible divergent, tandem, and convergent orientations.
View Article and Find Full Text PDFIn eukaryotes, chromosomes are encased by a dynamic nuclear envelope. In contrast to metazoans, where the nuclear envelope disassembles during mitosis, many fungi including budding yeast undergo "closed mitosis," where the nuclear envelope remains intact throughout the cell cycle. Consequently, during closed mitosis the nuclear envelope must expand to accommodate chromosome segregation to the two daughter cells.
View Article and Find Full Text PDFBackground: Coordinated cell growth and development requires that cells regulate the expression of large sets of genes in an appropriate manner, and one of the most complex and metabolically demanding pathways that cells must manage is that of ribosome biogenesis. Ribosome biosynthesis depends upon the activity of hundreds of gene products, and it is subject to extensive regulation in response to changing cellular conditions. We previously described an unusual property of the genes that are involved in ribosome biogenesis in yeast; a significant fraction of the genes exist on the chromosomes as immediately adjacent gene pairs.
View Article and Find Full Text PDFThe rRNA and ribosome biogenesis (RRB) regulon from Saccharomyces cerevisiae contains some 200 genes, the expression of which is tightly regulated under changing cellular conditions. RRB gene promoters are enriched for the RRPE and PAC consensus motifs, and a significant fraction of RRB genes are found as adjacent gene pairs. A genetic analysis of the MPP10 promoter revealed that both the RRPE and PAC motifs are important for coordinated expression of MPP10 following heat shock, osmotic stress, and glucose replenishment.
View Article and Find Full Text PDF