Publications by authors named "James Seo"

Introduction: Amyloid beta (Aβ) impairs the cerebral blood flow (CBF) increase induced by neural activity (functional hyperemia). Tissue plasminogen activator (tPA) is required for functional hyperemia, and in mouse models of Aβ accumulation tPA deficiency contributes to neurovascular and cognitive impairment. However, it remains unknown if tPA supplementation can rescue Aβ-induced neurovascular and cognitive dysfunction.

View Article and Find Full Text PDF

Background: Cerebral amyloid angiopathy (CAA) is a devastating condition common in patients with Alzheimer's disease but also observed in the general population. Vascular oxidative stress and neurovascular dysfunction have been implicated in CAA but the cellular source of reactive oxygen species (ROS) and related signaling mechanisms remain unclear. We tested the hypothesis that brain border-associated macrophages (BAM), yolk sac-derived myeloid cells closely apposed to parenchymal and leptomeningeal blood vessels, are the source of radicals through the Aβ-binding innate immunity receptor CD36, leading to neurovascular dysfunction, CAA, and cognitive impairment.

View Article and Find Full Text PDF
Article Synopsis
  • - Cerebral amyloid angiopathy (CAA) is a serious condition linked to Alzheimer's disease and involves dysfunctional blood vessel responses due to oxidative stress from reactive oxygen species (ROS), although the source of ROS was previously unclear.
  • - Researchers investigated whether brain border-associated macrophages (BAM), which are near blood vessels, produce ROS via the CD36 receptor, impacting neurovascular health and cognitive function in mice.
  • - The study found that deleting CD36 in BAM reduced ROS production, improved blood flow and cognitive function, decreased CAA-associated amyloid-beta levels, and enhanced the brain's ability to clear amyloid-beta without affecting other plaque forms.
View Article and Find Full Text PDF

The amyloid-β (Aβ) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aβ accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aβ.

View Article and Find Full Text PDF

Cerebrovascular abnormalities have emerged as a preclinical manifestation of Alzheimer's disease and frontotemporal dementia, diseases characterized by the accumulation of hyperphosphorylated forms of the microtubule-associated protein tau. However, it is unclear whether tau contributes to these neurovascular alterations independent of neurodegeneration. We report that mice expressing mutated tau exhibit a selective suppression of neural activity-induced cerebral blood flow increases that precedes tau pathology and cognitive impairment.

View Article and Find Full Text PDF