Publications by authors named "James Scott Brown"

Choosing optimal outcome measures maximizes statistical power, accelerates discovery and improves reliability in early-phase trials. We devised and evaluated a modification to a pragmatic measure of oxygenation function, the [Formula: see text] ratio. Because of the ceiling effect in oxyhaemoglobin saturation, [Formula: see text] ratio ceases to reflect pulmonary oxygenation function at high [Formula: see text] values.

View Article and Find Full Text PDF

This article reports on an in-depth study that investigates barriers to network exploration with visualizations. Network visualization tools are becoming increasingly popular, but little is known about how analysts plan and engage in the visual exploration of network data-which exploration strategies they employ, and how they prepare their data, define questions, and decide on visual mappings. Our study involved a series of workshops, interaction logging, and observations from a 6-week network exploration course.

View Article and Find Full Text PDF
Article Synopsis
  • * The introduction of the Synthetic Biology Open Language Visual (SBOLv) allows bioengineers to visually share biological designs, but maintaining the numerous glyphs in the standard poses challenges for tool development.
  • * The Python package paraSBOLv simplifies the creation of SBOLv diagrams with parametric glyph definitions, promoting faster development of biodesign tools and suggesting that adopting these definitions in the SBOLv standard could ease future tool creation and visual integration.
View Article and Find Full Text PDF

People who engineer biological organisms often find it useful to draw diagrams in order to communicate both the structure of the nucleic acid sequences that they are engineering and the functional relationships between sequence features and other molecular species. Some typical practices and conventions have begun to emerge for such diagrams. SBOL Visual aims to organize and systematize such conventions in order to produce a coherent language for expressing the structure and function of genetic designs.

View Article and Find Full Text PDF

VisBOL is a web-based visualization tool used to depict genetic circuit designs. This tool depicts simple DNA circuits adequately, but it has become increasingly outdated as new versions of SBOL Visual were released. This paper introduces VisBOL2, a heavily redesigned version of VisBOL that makes a number of improvements to the original VisBOL, including proper functional interaction rendering, dynamic viewing, a more maintainable code base, and modularity that facilitates compatibility with other software tools.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers in synthetic biology use diagrams to represent nucleic acid sequences and their functional relationships, leading to the emergence of standardized practices.
  • The Synthetic Biology Open Language Visual (SBOL Visual) offers a coherent set of conventions for these diagrams, enhancing communication about genetic designs.
  • Version 2.3 of SBOL Visual introduces novel features, such as depicting complex interactions, overlapping glyphs for nucleic acids, and new glyphs for unspecified interactions and inert DNA spacers, improving upon the previous version 2.2.
View Article and Find Full Text PDF

Background: Prognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions.

Methods: We developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis.

View Article and Find Full Text PDF

The Synthetic Biology Open Language (SBOL) is a community-developed data standard that allows knowledge about biological designs to be captured using a machine-tractable, ontology-backed representation that is built using Semantic Web technologies. While early versions of SBOL focused only on the description of DNA-based components and their sub-components, SBOL can now be used to represent knowledge across multiple scales and throughout the entire synthetic biology workflow, from the specification of a single molecule or DNA fragment through to multicellular systems containing multiple interacting genetic circuits. The third major iteration of the SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model with a focus on real-world applications, based on experience from the deployment of SBOL in a variety of scientific and industrial settings.

View Article and Find Full Text PDF

Synthetic biology builds upon genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. When designing a synthetic system, synthetic biologists need to exchange information about multiple types of molecules, the intended behavior of the system, and actual experimental measurements. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, following an open community process involving both wet bench scientists and dry scientific modelers and software developers, across academia, industry, and other institutions.

View Article and Find Full Text PDF
Article Synopsis
  • Engineers in synthetic biology use diagrams to depict genetic sequences and their functional relationships, helping with organization and communication.
  • The Synthetic Biology Open Language Visual (SBOL Visual) serves as a standard to create a uniform way to represent these genetic designs.
  • Version 2.2 of SBOL Visual enhances the previous version by updating molecular glyphs to align with SBO terms, adding new glyphs for various biological components, and introducing different representations for simple chemicals.
View Article and Find Full Text PDF

Biological engineers often find it useful to communicate using diagrams. These diagrams can include information both about the structure of the nucleic acid sequences they are engineering and about the functional relationships between features of these sequences and/or other molecular species. A number of conventions and practices have begun to emerge within synthetic biology for creating such diagrams, and the Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard to organize, systematize, and extend such conventions in order to produce a coherent visual language.

View Article and Find Full Text PDF

Synthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems is to improve the exchange of information about designed systems between laboratories.

View Article and Find Full Text PDF

People who are engineering biological organisms often find it useful to communicate in diagrams, both about the structure of the nucleic acid sequences that they are engineering and about the functional relationships between sequence features and other molecular species . Some typical practices and conventions have begun to emerge for such diagrams. The Synthetic Biology Open Language Visual (SBOL Visual) has been developed as a standard for organizing and systematizing such conventions in order to produce a coherent language for expressing the structure and function of genetic designs.

View Article and Find Full Text PDF

Visualizations of biomolecular structures empower us to gain insights into biological functions, generate testable hypotheses, and communicate biological concepts. Typical visualizations (such as ball and stick) primarily depict covalent bonds. In contrast, non-covalent contacts between atoms, which govern normal physiology, pathogenesis, and drug action, are seldom visualized.

View Article and Find Full Text PDF

We present sbml-diff, a tool that is able to read a model of a biochemical reaction network in SBML format and produce a range of diagrams showing different levels of detail. Each diagram type can be used to visualize a single model or to visually compare two or more models. The default view depicts species as ellipses, reactions as rectangles, rules as parallelograms, and events as diamonds.

View Article and Find Full Text PDF

OBJECTIVE: This longitudinal study of American veterans investigated the mortality risks of five World War II military experiences (i.e., combat exposure) and their variation among veterans in the post-war years.

View Article and Find Full Text PDF