Publications by authors named "James S Waters"

During flash floods, fire ants (Solenopsis invicta Buren) link their bodies together to build rafts to stay afloat, and towers to anchor onto floating vegetation. Can such challenging conditions facilitate synchronization and coordination, resulting in energy savings per capita? To understand how stress affects metabolic rate, we used constant-volume respirometry to measure the metabolism of fire ant workers. Group metabolic rates were measured in a series of conditions: at normal state, at three elevated temperatures, during rafting, and during tower-building.

View Article and Find Full Text PDF

Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn-dwelling ants () in response to urban heat island effects.

View Article and Find Full Text PDF

Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown.

View Article and Find Full Text PDF

Insects breathe using a system of tracheal tubes that ramify throughout the body. Rhythmic tracheal compression (RTC), the periodic collapse and reinflation of parts of the system, has been identified in multiple taxa, but little is known about the precise dynamics of tube deformation cycles. It has been hypothesized that during RTC, compression occurs synchronously throughout the body, but specific kinematic patterns along the length of individual tracheae may vary.

View Article and Find Full Text PDF

The physical spaces within which organisms live affect their biology and in many cases can be considered part of their extended phenotype. The nests of social insect societies have a fundamental impact on their ability to function as complex superorganisms. Ants in many species excavate elaborate subterranean nests, but others inhabit relatively small pre-formed cavities within rock crevices and hollow seeds.

View Article and Find Full Text PDF

Background: Many neuronal and glial diseases have been associated with changes in metabolism. Therefore, metabolic reprogramming has become an important area of research to better understand disease at the cellular level, as well as to identify targets for treatment. Model systems are ideal for interrogating metabolic questions in a tissue dependent context.

View Article and Find Full Text PDF

While it is clear that the insect tracheal system can respond in a compensatory manner to both hypoxia and hyperoxia, there is substantial variation in how different parts of the system respond. However, the response of tracheal structures, from the tracheoles to the largest tracheal trunks, have not been studied within one species. In this study, we examined the effect of larval/pupal rearing in hypoxia, normoxia, and hyperoxia (10, 21 or 40kPa oxygen) on body size and the tracheal supply to the flight muscles of Drosophila melanogaster, using synchrotron radiation micro-computed tomography (SR-µCT) to assess flight muscle volumes and the major tracheal trunks, and confocal microscopy to assess the tracheoles.

View Article and Find Full Text PDF

Metabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation.

View Article and Find Full Text PDF

Insects, and all animals, exhibit hypometric scaling of metabolic rate, with larger species having lower mass-specific metabolic rates. The metabolic theory of ecology (MTE) is based on models ascribing hypometric scaling of metabolic rate to constrained O supply systems in larger animals. We compiled critical PO of metabolic and growth rates for more than 40 insect species with a size range spanning four orders of magnitude.

View Article and Find Full Text PDF

Rhythmic patterns of compression and reinflation of the thin-walled hollow tubes of the insect tracheal system have been observed in a number of insects. These movements may be important for facilitating the transport and exchange of respiratory gases, but observing and characterizing the dynamics of internal physiological systems within live insects can be challenging due to their size and exoskeleton. Using synchrotron X-ray phase-contrast imaging, we observed dynamical behavior in the tracheal system of the beetle, Odontotaenius disjunctus.

View Article and Find Full Text PDF

Insect tracheal-respiratory systems achieve high fluxes and great dynamic range with low energy requirements and could be important models for bioengineers interested in developing microfluidic systems. Recent advances suggest that insect cardiorespiratory systems have functional valves that permit compartmentalization with segment-specific pressures and flows and that system anatomy allows regional flows. Convection dominates over diffusion as a transport mechanism in the major tracheae, but Reynolds numbers suggest viscous effects remain important.

View Article and Find Full Text PDF

We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy.

View Article and Find Full Text PDF

Investigating local-scale interactions within a network makes it possible to test hypotheses about the mechanisms of global network connectivity and to ask whether there are general rules underlying network function across systems. Here we use motif analysis to determine whether the interactions within social insect colonies resemble the patterns exhibited by other animal associations or if they exhibit characteristics of biological regulatory systems. Colonies exhibit a predominance of feed-forward interaction motifs, in contrast to the densely interconnected clique patterns that characterize human interaction and animal social networks.

View Article and Find Full Text PDF

Insects in general, and Drosophila in particular, are much more capable of surviving anoxia than vertebrates, and the mechanisms involved are of considerable biomedical and ecological interest. Temperature is likely to strongly affect both the rates of damage occurring in anoxia and the recovery processes in normoxia, but as yet there is no information on the effect of this crucial variable on recovery rates from anoxia in any animal. We studied the effects of temperature, and thus indirectly of metabolic flux rates, on survival and recovery times of individual male Drosophila melanogaster following anoxia and O(2) reperfusion.

View Article and Find Full Text PDF

The negative allometric scaling of metabolic rate with body size is among the most striking patterns in biology. We investigated whether this pattern extends to physically independent eusocial systems by measuring the metabolic rates of whole functioning colonies of the seed-harvester ant Pogonomyrmex californicus. These intraspecific scaling data were compared to the predictions of an additive model developed to estimate collective metabolic rates.

View Article and Find Full Text PDF

Rhythmic tracheal compression is a prominent feature of internal dynamics in multiple orders of insects. During compression parts of the tracheal system collapse, effecting a large change in volume, but the ultimate physiological significance of this phenomenon in gas exchange has not been determined. Possible functions of this mechanism include to convectively transport air within or out of the body, to increase the local pressure within the tracheae, or some combination thereof.

View Article and Find Full Text PDF

Background: Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9js070k49a6r18gpadfc3qqqmc573hts): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once