Publications by authors named "James S Speck"

A novel deep-ridge laser structure with atomic-layer deposition (ALD) sidewall passivation was proposed that enhances the optical characteristics of 8-µm ridge width III-nitride violet lasers on freestanding m-plane GaN substrates. The internal loss was determined using the variable stripe length method, where the laser structure with ALD sidewall passivation showed lower internal loss compared to the conventional shallow-ridge laser design. ALD sidewall passivation plays a critical role in device improvements; compared to the lasers without ALD sidewall passivation, the lasers with ALD sidewall passivation yield improved optoelectrical performance and longer lifetime under continuous-wave operation at high current density.

View Article and Find Full Text PDF

Highly efficient long-wavelength InGaN LEDs have been a research focus in nitride LEDs for their potential applications in displays and solid-state lighting. A key breakthrough has been the use of laterally injected quantum wells via naturally occurring V-defects which promote hole injection through semipolar sidewalls and help to overcome the barriers to carrier injection that plague long wavelength nitride LEDs. In this article, we study V-defect engineered LEDs on (0001) patterned sapphire substrates (PSS) and GaN on (111) Si.

View Article and Find Full Text PDF

AlGaN-based UV-A LEDs have wide applications in medical treatment and chemical sensing; however, their efficiencies are still far behind visible LEDs or even shorter wavelengths UV-C counterparts because of the large lattice mismatch between the low-Al-content active region and the AlN substrate. In this report, we investigated the composition and thickness of the quantum barrier in the active region in terms of LED performance. Due to the improved strain management and better carrier confinement, efficient UV-A LEDs (320 nm - 330 nm) with EQEs up to 6.

View Article and Find Full Text PDF

We demonstrate vertical integration of nitride-based blue/green micro-light-emitting diodes (µLEDs) stacks with independent junctions control using hybrid tunnel junction (TJ). The hybrid TJ was gown by metal organic chemical vapor deposition (p GaN) and molecular-beam epitaxy (n GaN). Uniform blue, green and blue/green emission can be generated from different junction diodes.

View Article and Find Full Text PDF

Near-band-gap photoemission spectroscopy experiments were performed on p-GaN and p-InGaN/GaN photocathodes activated to negative electron affinity. The photoemission quantum yield of the InGaN samples with more than 5% of indium drops by more than 1 order of magnitude when the temperature is decreased while it remains constant for lower indium content. This drop is attributed to a freezing of photoelectron transport in p-InGaN due to electron localization in the fluctuating potential induced by the alloy disorder.

View Article and Find Full Text PDF

In this work, we present fully transparent metal organic chemical vapor deposition (MOCVD)-grown InGaN cascaded micro-light-emitting diodes (µLEDs) with independent junction control. The cascaded µLEDs consisted of a blue emitting diode, a tunnel junction (TJ), a green emitting diode, and a TJ, without using any conductive oxide layer. We can control the injection of carriers into blue, green, and blue/green junctions in the same device independently, which show high optical and electrical performance.

View Article and Find Full Text PDF

We reported significant improvements in device speed by reducing the quantum barrier (QB) thicknesses in the InGaN/GaN multiple quantum well (MQW) photodetectors (PDs). A 3-dB bandwidth of 700 MHz was achieved with a reverse bias of -6 V. Carrier escape lifetimes due to carrier trapping in the quantum wells (QWs) were obtained from both simulation and experimental fitting, identifying carrier trapping as the major speed limiting factor in the InGaN/GaN MQW PDs.

View Article and Find Full Text PDF

We demonstrate InGaN-based semipolar 560 nm micro-light-emitting diodes with 2.5% EQE on high-quality and low-defect-density (20-21) GaN templates grown on scalable and low-cost sapphire substrates. Through transmission electron microscopy observations, we discuss how the management of misfit dislocations and their confinement in areas away from the active light-emitting region is necessary for improving device performance.

View Article and Find Full Text PDF

High performance InGaN micro-size light-emitting diodes (µLEDs) with epitaxial tunnel junctions (TJs) were successfully demonstrated using selective area growth (SAG) by metalorganic chemical vapor deposition (MOCVD). Patterned n + GaN/n-GaN layers with small holes were grown on top of standard InGaN blue LEDs to form TJs using SAG. TJ µLEDs with squared mesa ranging from 10×10 to 100×100 µm were fabricated.

View Article and Find Full Text PDF

We demonstrate a simple method to fabricate efficient, electrically driven, polarized, and phosphor-free white semipolar (20-21) InGaN light-emitting diodes (LEDs) by adopting a top blue quantum well (QW) and a bottom yellow QW directly grown on (20-21) semipolar bulk GaN substrate. At an injection current of 20 mA, the fabricated 0.1 mm size regular LEDs show an output power of 0.

View Article and Find Full Text PDF

The electrical and optical improvements of AlGaInP micro-light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) sidewall passivation were demonstrated. Due to the high surface recombination velocity and minority carrier diffusion length of the AlGaInP material system, devices without sidewall passivation suffered from high leakage and severe drop in external quantum efficiency (EQE). By employing ALD sidewall treatments, the 20×20 µm µLEDs resulted in greater light output power, size-independent leakage current density, and lower ideality factor.

View Article and Find Full Text PDF

The last two decades have shown an increasing need for GaN-based laser diodes (LDs), which are currently only grown on bulk GaN substrates, which remain to date very expensive and/or only available in small sizes. The ever growing laser market will expand in the coming years, thanks to the development of automotive laser lighting, high-speed Li-Fi optical data transmission, LiDAR sensing for autonomous vehicles and smart cities, head-up displays, and AR/VR systems, in addition to biomedical and further industrial applications. These emerging technologies demand for mass-production of GaN-based lasers to be produced on large-size, low-cost, and industrially compatible substrates.

View Article and Find Full Text PDF

Discovering ways to increase the LED light extraction efficiency (LEE) should help create the largest performance improvement in the power of UV AlGaN LEDs. Employing surface roughening to increase the LEE of typical AlGaN UV LEDs is challenging and not well understood, yet it can be achieved easily in AlGaN LEDs grown on SiC. We fabricate thin-film UV LEDs (~294-310 nm) grown on SiC-with reflective contacts and roughened emission surface-to study and optimize KOH roughening of N-face AlN on the LEE as a function of roughened AlN pyramid size and KOH solution temperature.

View Article and Find Full Text PDF

A nonpolar edge emitting thin film InGaN laser diode has been separated from its native substrate by mechanical tearing with adhesive tape, combining the benefits of Epitaxial Lateral Overgrowth (ELO) and cleavability of nonpolar GaN crystal. The essence of ELO is mainly to weakening strength between native substrate and the fabricated laser device on top of it. We report a 3 mm long laser bar removed from its native GaN substrate.

View Article and Find Full Text PDF

We demonstrate high-power edge-emitting laser diodes (LDs) with tunnel junction contacts grown by molecular beam epitaxy (MBE). Under pulsed conditions, lower threshold current densities were observed from LDs with MBE-grown tunnel junctions than from similarly fabricated control LDs with ITO contacts. LDs with tunnel junction contacts grown by metal-organic chemical vapor deposition (MOCVD) were additionally demonstrated.

View Article and Find Full Text PDF

The possibility of a III-nitride LED with 100% or greater wall-plug efficiency is examined considering recent observations of the phenomenon for smaller bandgap mid-IR LEDs under extremely low-bias operation [Phys. Rev. Lett.

View Article and Find Full Text PDF

We report continuous-wave (CW) blue semipolar (202¯1) III-nitride laser diodes (LDs) that incorporate limited area epitaxy (LAE) n-AlGaN bottom cladding with thin p-GaN and ZnO top cladding layers. LAE mitigates LD design limitations that arise from stress relaxation, while ZnO layers reduce epitaxial growth time and temperature. Numerical modeling indicates that ZnO reduces the internal loss and increases the differential efficiency of TCO clad LDs.

View Article and Find Full Text PDF

GaN-based semiconductor optical amplifier (SOA) and its integration with laser diode (LD) is an essential building block yet to be demonstrated for III-nitride photonic integrated circuits (PICs) at visible wavelength. This paper presents the InGaN/GaN quantum well (QW) based dual-section LD consisting of integrated amplifier and laser gain regions fabricated on a semipolar GaN substrate. The threshold current in the laser gain region was favorably reduced from 229mA to 135mA at SOA driving voltages, V, of 0V and 6.

View Article and Find Full Text PDF

The effect of employing an AlGaN cap layer in the active region of green c-plane light-emitting diodes (LEDs) was studied. Each quantum well (QW) and barrier in the active region consisted of an InGaN QW and a thin AlGaN cap layer grown at a relatively low temperature and a GaN barrier grown at a higher temperature. A series of experiments and simulations were carried out to explore the effects of varying the AlGaN cap layer thickness and GaN barrier growth temperature on LED efficiency and electrical performance.

View Article and Find Full Text PDF

Commercial LEDs for solid-state lighting are often designed for operation at current densities in the droop regime (~35 A/cm) to minimize costly chip area; however, many benefits can be realized by operating at low current density (J ≈1 - 5 A/cm). Along with mitigation of droop losses and reduction of the operating voltage, low J operation of LEDs opens the design space for high light extraction efficiency (LEE). This work presents detailed ray tracing simulations of an LED design for low J operation with LEE ≈94%.

View Article and Find Full Text PDF

We demonstrate efficient semipolar (11-22) 550 nm yellow/green InGaN light-emitting diodes (LEDs) with InGaN barriers on low defect density (11-22) GaN/patterned sapphire templates. The InGaN barriers were clearly identified, and no InGaN clusters were observed by atom probe tomography measurements. The semipolar (11-22) 550 nm InGaN LEDs (0.

View Article and Find Full Text PDF

Data communication based on white light generated using a near-ultraviolet (NUV) laser diode (LD) pumping red-, green-, and blue-emitting (RGB) phosphors was demonstrated for the first time. A III-nitride laser diode (LD) on a semipolar (2021¯)  substrate emitting at 410 nm was used for the transmitter. The measured modulation bandwidth of the LD was 1 GHz, which was limited by the avalanche photodetector.

View Article and Find Full Text PDF

Accuracy of atom probe tomography measurements is strongly degraded by the presence of phases that have different evaporation fields. In particular, when there are perpendicular interfaces to the tip axis in the specimen, layers thicknesses are systematically biased and the resolution is degraded near the interfaces. Based on an analytical model of field evaporated emitter end-form, a new algorithm dedicated to the 3D reconstruction of multilayered samples was developed.

View Article and Find Full Text PDF

We report a device that monolithically integrates optically pumped (20-21) III-nitride quantum wells (QWs) with 560 nm emission on top of electrically injected QWs with 450 nm emission. The higher temperature growth of the blue light-emitting diode (LED) was performed first, which prevented thermal damage to the higher indium content InGaN of the optically pumped QWs. A tunnel junction (TJ) was incorporated between the optically pumped and electrically injected QWs; this TJ enabled current spreading in the buried LED.

View Article and Find Full Text PDF

We demonstrate a thin-film flip-chip (TFFC) process for LEDs grown on freestanding c-plane GaN substrates. LEDs are transferred from a bulk GaN substrate to a sapphire submount via a photoelectrochemical (PEC) undercut etch. This PEC liftoff method allows for substrate reuse and exposes the N-face of the LEDs for additional roughening.

View Article and Find Full Text PDF